Stochastic Modelling of HIV-1 Replication in a CD4 T Cell with an IFN Response
Abstract
:1. Introduction
- Develop an analytical tool for data assimilation and analysis of HIV-1 replication and the IFN-I response;
- Identify the control points underlying the viral ability to evade IFN-I-mediated defences as they represent potential targets for antiviral and immune therapies;
- Predict the effective reproduction number of single-cell infection resulting from the competition of multiple factors related to viral and IFN-I-dependent products.
2. Methods
2.1. Intracellular Type I Interferon Response and HIV-1 Replication
2.2. Governing Deterministic Equations
- where:
- is the number of free virions in vicinity of the cell;
- is the number of virions bound to CD4 and the co-receptor.
- Here, h; h; h; h.
- where:
- is the number of genomic RNA molecules in the cytoplasm;
- is the number of proviral DNA molecules synthesised by reverse transcription;
- is the number of DNA molecules in the nucleus;
- is the number of integrated DNA;
- is the number of molecules of the apolipoprotein B editing complex;
- is the number of molecules of the cellular enzyme, responsible for blocking the replication of HIV in dendritic cells, macrophages, monocytes, and resting CD4+ T lymphocytes.
- Here, h, h, h; h, h, h; h; h, h.
- The two last terms in Equation (3) describe the inhibitory effect of the SAMHD1 and APOBEC3 proteins.
- where:
- is the number of HIV mRNA molecules in the nucleus: g for genomic or full-length;
- is the number of HIV singly spliced (ss) mRNA molecules in the nucleus;
- is the number of HIV doubly spliced (ds) mRNA molecules in the nucleus;
- is the number of HIV mRNA molecules in the cytoplasm: g for genomic or full-length;
- is the number of HIV singly spliced (ss) mRNA molecules in the cytoplasm;
- is the number of HIV doubly spliced (ds) mRNA molecules in the cytoplasm.
- Here, h, h, h, h, h.
- Functions , , describe the Tat-Rev regulation of transcription:
- Here, h, h, molecules, molecules, .
- where
- , , , , , , and are, respectively, the number of the Tat, Rev, Gag-Pol, Gag, gp160, Vpu, and Vif protein molecules.
- Here, , , , , , , ; h, h;
- h, h, h, h, h, h.
- where: , , , are, respectively, the number of the Gag-Pol, Gag, and gp160 viral protein molecules at the membrane;
- is the number of viral RNA molecules at the membrane;
- is the number of Vpu protein molecules at the membrane;
- is the number of pre-virion complexes at the membrane.
- Here, h, h, h;
- , , , , h, h, h, h.
- where:
- is the number of free viruses after budding from the cell;
- is the number of mature virions outside the cell;
- is the number of Tetherin molecules.
- Here, h, h, h.
- where:
- is the number of the RIG-1 protein molecules;
- and are the number molecules of the IRF3 and NF-kb proteins;
- and are the number of molecules of intercellular and extracellular IFN, respectively.
- Here, h, h, h, h, h, h, h, h, h.
- where:
- is the number of STAT-1–STAT-2 heterodimers;
- is the number of molecules of the apolipoprotein B editing complex;
- is the number of molecules of a cellular enzyme, responsible for blocking the replication of HIV in dendritic cells, macrophages, monocytes, and resting CD4+ T lymphocytes; is the number of Tetherin molecules.
- Here, h, h, h, h, h, h, h, h.
- IRF3
- , [NF-kB], and [STAT1,2]: corresponds to molecules per litre, where is the Avogadro number. The typical diameter of the CD4+ T cell is 6 m, which gives its typical volume as m L. Now, we can evaluate the factor molecules per nM.
- IFN
- : 1 pg contains molecules, where Da is the molar mass of IFN-I. Now, we can evaluate the factor molecules per pg/mL; here, mL.
- IFN
- : we assumed that the effective volume of the extracellular IFN molecules that can activate the STAT12 pathway is equal to the volume of the cell . This gives us the same terms for IFN export in Equations (31) and (32) for computation as either concentrations or the number of molecules. Therefore, molecules per pg/mL.
2.3. The Stochastic Model
2.3.1. General Consideration
Algorithm 1: Gillespie’s direct method |
|
2.3.2. Specific Implementation
3. Results
3.1. Sensitivity of HIV-1 and IFN-I Secretion to IFN-Mediated Control
3.2. Stochastic Dynamics
3.3. Structural Analysis of PDF for Stochastic Realisations
3.4. Identifying the PDFs of Stochastic Dynamics
3.5. Heterogeneity of the Size of HIV-1 Progeny
3.6. Uncertainty Bands in the Dynamics of HIV-1 and IFN-I Production
3.7. HIV-1 Life Cycle Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HIV-1 | Human immunodeficiency virus Type 1 |
IFN-I | Interferon Type I |
ISG | Interferon-stimulated genes I |
IRF | Interferon regulatory factors I |
RT | Reverse transcription |
ODE | Ordinary differential equation |
MC | Markov chain |
References
- Manion, M.; Rodriguez, B.; Medvik, K.; Hardy, G.; Harding, C.V.; Schooley, R.T.; Pollard, R.; Asmuth, D.; Murphy, R.; Barker, E.; et al. Interferon-alpha administration enhances CD8+ T Cell activation in HIV infection. PLoS ONE 2012, 7, e30306. [Google Scholar] [CrossRef] [PubMed]
- Murira, A.; Lamarre, A. Type-I Interferon responses: From friend to foe in the battle against chronic viral infection. Front. Immunol. 2016, 7, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soper, A.; Kimura, I.; Nagaoka, S.; Konno, Y.; Yamamoto, K.; Koyanagi, Y.; Sato, K. Type I interferon responses by HIV-1 infection: Association with disease progression and control. Front. Immunol. 2018, 8, 1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, S.S.; Bibollet-Ruche, F.; Sherrill-Mix, S.; Learn, G.H.; Plenderleith, L.; Smith, A.G.; Barbian, H.J.; Russell, R.M.; Gondim, M.V.P.; Bahari, C.Y.; et al. Resistance to type 1 interferons is a major determinant of HIV-1 transmission fitness. Proc. Natl. Acad. Sci. USA 2017, 114, E590–E599. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Kang, W.; Zuo, J.; Kang, W.; Sun, Y. The significance of Type-I interferons in the pathogenesis and therapy of human immunodeficiency virus 1 infection. Front. Immunol. 2017, 8, 1431. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, C.; Lafferty, M.; Garzino-Demo, A.; Jung, N.; Hartmann, P.; Fatkenheuer, G.; Wolf, J.S.; van Lunzen, J.; Romerio, F. Plasmacytoid dendritic cells accumulate and secrete interferon alpha in lymph nodes of HIV-1 patients. PLoS ONE 2010, 5, e11110. [Google Scholar] [CrossRef] [Green Version]
- Dagenais-Lussier, X.; Loucif, H.; Murira, A.; Laulhe, X.; Stager, S.; Lamarre, A.; van Grevenynghe, J. Sustained IFN-I expression during established persistent viral infection: A “Bad Seed” for protective immunity. Viruses 2017, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Pulliam, L. Cognitive consequences of a sustained monocyte type 1 IFN response in HIV-1 infection. Curr. HIV Res. 2014, 12, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Hardy, G.A.; Sieg, S.; Rodriguez, B.; Anthony, D.; Asaad, R.; Jiang, W.; Mudd, J.; Schacker, T.; Funderburg, N.T.; Pilch-Cooper, H.A.; et al. Interferon-α is the primary plasma type-I IFN in HIV-1 infection and correlates with immune activation and disease markers. PLS ONE 2013, 8, e56527. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Sumner, R.P.; Rasaiyaah, J.; Tan, C.P.; Rodriguez-Plata, M.T.; van Tulleken, C.; Fink, D.; Zuliani-Alvarez, L.; Thorne, L.; Stirling, D.; et al. HIV-1 Vpr antagonizes innate immune activation by targeting karyopherin-mediated NF-κB/IRF3 nuclear transport. eLife 2020, 9, e60821. [Google Scholar] [CrossRef] [PubMed]
- Murugaiah, V.; Yasmin, H.; Pandit, H.; Ganguly, K.; Subedi, R.; Al-Mozaini, M.; Madan, T.; Kishore, U. Innate immune response against HIV-1. Adv. Exp. Med. Biol. 2021, 1313, 23–58. [Google Scholar] [CrossRef]
- Kirby, D.; Parmar, B.; Fathi, S.; Marwah, S.; Nayak, C.; Cherepanov, V.; MacParland, S.; Feld, J.J.; Altan-Bonnet, G.; Zilman, A. Determinants of ligand specificity and functional plasticity in type I interferon signaling. Front. Immunol. 2021, 12, 748423. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-stimulated genes: A complex web of host defenses. Annu. Rev. Immunol. 2014, 32, 513–545. [Google Scholar] [CrossRef] [Green Version]
- Shcherbatova, O.; Grebennikov, D.; Sazonov, I.; Meyerhans, A.; Bocharov, G. Modeling of the HIV-1 life cycle in productively infected cells to predict novel therapeutic targets. Pathogens 2020, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Sazonov, I.; Grebennikov, D.; Meyerhans, A.; Bocharov, G. Markov chain based stochastic modelling of HIV-1 life cycle in a CD4 T cell. Mathematics 2021, 9, 2025. [Google Scholar] [CrossRef]
- Browne, E.P.; Letham, B.; Rudin, C. A Computational model of inhibition of HIV-1 by Interferon-alpha. PLoS ONE 2016, 11, e0152316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinas, M. Data-Driven Modeling of the Dynamic Competition between Virus Infection and the Antiviral Interferon Response. Ph.D. Thesis, University of Heidelberg, Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Borkotoky, S.; Dey, D.; Hazarika, Z.; Joshi, A.; Tripathi, K. Unravelling viral dynamics through molecular dynamics simulations—A brief overview. Biophys. Chem. 2022, 291, 106908. [Google Scholar] [CrossRef]
- Doyle, T.; Goujon, C.; Malim, M.H. HIV-1 and interferons: Who’s interfering with whom? Rev. Nat. Rev. Microbiol. 2015, 13, 403–413. [Google Scholar] [CrossRef]
- Bishop, K.N.; Verma, M.; Kim, E.Y.; Wolinsky, S.M.; Malim, M.H. APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog. 2008, 4, e1000231. [Google Scholar] [CrossRef]
- Casartelli, N.; Sourisseau, M.; Feldmann, J.; Guivel-Benhassine, F.; Mallet, A.; Marcelin, A.G.; Guatelli, J.; Schwartz, O. Tetherin restricts productive HIV-1 cell-to-cell transmission. PLoS Pathog. 2010, 17, e1000955. [Google Scholar] [CrossRef] [Green Version]
- Strebel, K. HIV accessory proteins versus host restriction factors. Curr. Opin. Virol. 2013, 3, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Laguette, N.; Sobhian, B.; Casartelli, N.; Ringeard, M.; Chable-Bessia, C.; Ségéral, E.; Yatim, A.; Emiliani, S.; Schwartz, O.; Benkirane, M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011, 474, 654–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craigie, R.; Bushman, F. HIV DNA integration. Cold Spring Harb. Perspect. Med. 2012, 2, a006890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, P.; Desfarges, S.; Bartha, I.; Joos, B.; Zangger, N.; Muñoz, M.; Günthard, H.F.; Beerenwinkel, N.; Telenti, A.; Ciuffi, A. 24 hours in the life of HIV-1 in a T cell line. PLoS Pathog. 2013, 9, e1003161. [Google Scholar] [CrossRef] [PubMed]
- Legewie, S.; Herzel, H.; Westerhoff, H.V.; Bluethgen, N. Recurrent design patterns in the feedback regulation of the mammalian signalling network. Mol. Syst. Biol. 2008, 4, 190. [Google Scholar] [CrossRef]
- Schwanhäusser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Global quantification of mammalian gene expression control. Nature 2011, 473, 337–342. [Google Scholar] [CrossRef] [Green Version]
- Reddy, B.; Yin, J. Quantitative intracellular kinetics of HIV type 1. AIDS Res. Hum. Retrovir. 1999, 15, 273–283. [Google Scholar] [CrossRef]
- Gelais, C.S.; Kim, S.H.; Ding, L.; Yount, J.S.; Ivanov, D.; Spearman, P.; Wu, L. A putative cyclin-binding motif in human SAMHD1 contributes to protein phosphorylation, localization, and stability. J. Biol. Chem. 2016, 291, 26332–26342. [Google Scholar] [CrossRef] [Green Version]
- Hultquist, J.F.; Harris, R.S. Leveraging APOBEC3 proteins to alter the HIV mutation rate and combat AIDS. Future Virol. 2012, 4, 605. [Google Scholar] [CrossRef]
- Goila-Gaur, R.; Strebel, K. HIV-1, Vif, APOBEC, and intrinsic immunity. Retrovirology 2008, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Dubé, M.; Bego, M.G.; Paquay, C.; Cohen, E.A. Modulation of HIV-1-host interaction: Role of the Vpu accessory protein. Retrovirology 2010, 7, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillespie, D.T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 1976, 22, 403–434. [Google Scholar] [CrossRef]
- Gillespie, D.T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 1977, 81, 2340–2361. [Google Scholar] [CrossRef]
- Gillespie, D.T. Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem. 2007, 58, 35–55. [Google Scholar] [CrossRef]
- Darling, R.; Norris, J. Differential equation approximations for Markov chains. Probab. Surv. 2008, 5, 37–79. [Google Scholar] [CrossRef] [Green Version]
- Pearson, J.E.; Krapivsky, P.; Perelson, A.S. Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions. PLoS Comput. Biol. 2011, 7, e1001058. [Google Scholar] [CrossRef] [Green Version]
- Sazonov, I.; Kelbert, M.; Gravenor, M.B. A two-stage model for the SIR outbreak: Accounting for the discrete and stochastic nature of the epidemic at the initial contamination stage. Math. Biosci. 2011, 234, 108–117. [Google Scholar] [CrossRef]
- Boudec, J.; McDonald, D.; Mundinger, J. A generic mean field convergence result for systems of interacting objects. In Proceedings of the Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007), Edinburgh, UK, 17–19 September 2007; pp. 3–18. [Google Scholar] [CrossRef] [Green Version]
- Sazonov, I.; Grebennikov, D.; Kelbert, M.; Bocharov, G. Modelling stochastic and deterministic behaviours in virus infection dynamics. Math. Model. Nat. Phenom. 2017, 12, 63–77. [Google Scholar] [CrossRef]
- Sazonov, I.; Grebennikov, D.; Kelbert, M.; Meyerhans, A.; Bocharov, G. Viral infection dynamics model based on a Markov process with time delay between cell infection and progeny production. Mathematics 2020, 8, 1207. [Google Scholar] [CrossRef]
- Bocharov, G.; Chereshnev, V.; Gainova, I.; Bazhan, S.; Bachmetyev, B.; Argilaguet, J.; Martinez, J.; Meyerhans, A. Human immunodeficiency virus infection: From biological observations to mechanistic mathematical modelling. Math. Model. Nat. Phenom. 2012, 7, 78–104. [Google Scholar] [CrossRef]
- Sazonov, I.; Grebennikov, D.; Meyerhans, A.; Bocharov, G. Sensitivity of SARS-CoV-2 life cycle to IFN effects and ACE2 binding unveiled with a stochastic model. Viruses 2022, 14, 403. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Mattapallil, J.J. Interferon-alpha subtypes as an adjunct therapeutic approach for human immunodeficiency virus functional cure. Front. Immunol. 2018, 9, 299. [Google Scholar] [CrossRef] [PubMed]
- Bocharov, G.; Grebennikov, D.; Cebollada Rica, P.; Domenjo-Vila, E.; Casella, V.; Meyerhans, A. Functional cure of a chronic virus infection by shifting the virus–host equilibrium state. Front. Immunol. 2022, 13, 904342. [Google Scholar] [CrossRef] [PubMed]
- Zhen, A.; Rezek, V.; Youn, C.; Lam, B.; Chang, N.; Rick, J.; Carrillo, M.; Martin, H.; Kasparian, S.; Syed, P.; et al. Targeting type I interferon-mediated activation restores immune function in chronic HIV infection. J. Clin. Investig. 2017, 127, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Bocharov, G.A.; Danilov, A.A.; Vassilevski, Y.V.; Marchuk, G.I.; Chereshnev, V.A.; Ludewig, B. Simulation of the interferon-mediated protective field in lymphoid organs with their spatial and functional organization taken into consideration. Dokl. Biol. Sci. 2022, 439, 194–196. [Google Scholar] [CrossRef]
- Devanathan, A.S.; White, N.R.; Desyaterik, Y.; De la Cruz, G.; Nekorchuk, M.; Terry, M.; Busman-Sahay, K.; Adamson, L.; Luciw, P.; Fedoriw, Y.; et al. Quantitative imaging analysis of the spatial relationship between antiretrovirals, reverse transcriptase simian-human immunodeficiency virus RNA, and fibrosis in the spleens of nonhuman primates. Antimicrob. Agents Chemother. 2022, 66, e00609-22. [Google Scholar] [CrossRef]
- Einkauf, K.B.; Osborn, M.R.; Gao, C.; Sun, W.; Sun, X.; Lian, X.; Parsons, E.; Gladkov, G.T.; Seiger, K.; Blackmer, J.E.; et al. Parallel analysis of transcription, integration, and sequence of single HIV-1 proviruses. Cell 2022, 185, 266–282. [Google Scholar] [CrossRef]
- Patro, S.; Niyongabo, A.; Maldarelli, F.; Kearney, M. New approaches to multi-parametric HIV-1 genetics using multiple displacement amplification: Determining the what, how, and where of the HIV-1 reservoirs. Viruses 2021, 13, 2475. [Google Scholar] [CrossRef]
m | Transition | Propensity, | m | Transition | Propensity, |
---|---|---|---|---|---|
1 | 42 | ||||
2 | 43 | ||||
3 | 44 | ||||
4 | 45 | ||||
5 | 46 | ||||
6 | 47 | ||||
7 | 48 | ||||
8 | 49 | ||||
9 | 50 | ||||
10 | 51 | ||||
11 | 52 | ||||
12 | 53 | ||||
13 | 54 | ||||
14 | 55 | ||||
15 | 56 | ||||
16 | 57 | ||||
17 | 58 | ||||
18 | 59 | ||||
19 | 60 | ||||
20 | 61 | ||||
21 | 62 | ||||
22 | 63 | ||||
23 | 64 | ||||
24 | 65 | ||||
25 | 66 | ||||
26 | 67 | ||||
27 | 68 | ||||
28 | 69 | ||||
29 | 70 | ||||
30 | 71 | ||||
31 | 72 | ||||
32 | 73 | ||||
33 | 74 | ||||
34 | 75 | ||||
35 | 76 | ||||
36 | 77 | ||||
37 | 78 | ||||
38 | 79 | ||||
39 | 80 | ||||
40 | 81 | ||||
41 |
det | mean | det | mean | det | mean | ||||
---|---|---|---|---|---|---|---|---|---|
508 | 585 | 15% | 763 | 874 | 15% | 1010 | 1158 | 15% | |
Life Cycle Efficiency | 127 | 146 | 127 | 146 | 126 | 145 | |||
94 | 295 | 215% | 160 | 443 | 176% | 228 | 591 | 159% | |
Life Cycle Efficiency | 23 | 74 | 27 | 74 | 28 | 74 | |||
IFN Inhibitory Factor | 5.42 | 1.98 | 4.76 | 1.98 | 4.43 | 1.96 | |||
51 | 181 | 257% | 94 | 273 | 191% | 365 | 163 | 49% | |
Life Cycle Efficiency | 13 | 45 | 16 | 45 | 17 | 46 | |||
IFN Inhibitory Factor | 10.0 | 3.24 | 8.31 | 3.21 | 7.29 | 3.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sazonov, I.; Grebennikov, D.; Savinkov, R.; Soboleva, A.; Pavlishin, K.; Meyerhans, A.; Bocharov, G. Stochastic Modelling of HIV-1 Replication in a CD4 T Cell with an IFN Response. Viruses 2023, 15, 296. https://doi.org/10.3390/v15020296
Sazonov I, Grebennikov D, Savinkov R, Soboleva A, Pavlishin K, Meyerhans A, Bocharov G. Stochastic Modelling of HIV-1 Replication in a CD4 T Cell with an IFN Response. Viruses. 2023; 15(2):296. https://doi.org/10.3390/v15020296
Chicago/Turabian StyleSazonov, Igor, Dmitry Grebennikov, Rostislav Savinkov, Arina Soboleva, Kirill Pavlishin, Andreas Meyerhans, and Gennady Bocharov. 2023. "Stochastic Modelling of HIV-1 Replication in a CD4 T Cell with an IFN Response" Viruses 15, no. 2: 296. https://doi.org/10.3390/v15020296