Characterization of the Cynomolgus Macaque Model of Marburg Virus Disease and Assessment of Timing for Therapeutic Treatment Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Quality System
2.3. Experimental Design
2.4. Challenge Agent Source and Propagation History
2.5. Clinical Observations
2.6. Body Temperature and Activity Monitoring by Telemetry
2.7. Clinical Pathology
2.7.1. Hematology Analysis
2.7.2. Coagulation Analysis
2.7.3. Blood Chemistry Analysis
2.8. Plasma Viral RNA Assessment
2.9. Plaque Assay for Challenge Backtiter and Viremia Assessment
2.10. Euthanasia
3. Results
3.1. Survival
3.2. Responsiveness
3.3. Plasma Viral RNA
3.4. Serum Infectious Virus Load (Serum Plaque Assay)
3.5. Body Temperature and Activity by Telemetry
3.5.1. Body Temperature
3.5.2. Activity
3.6. Clinical Pathology
3.7. Anatomic Pathology
3.7.1. Gross Findings
3.7.2. IHC and ISH
3.7.3. Findings in Specific Tissues
Liver
Spleen
Lymph Nodes
Gastrointestinal Tract
Kidney
Inoculation Site
Reproductive Organs
4. Discussion
4.1. MARV Infection and Disease Kinetics
4.1.1. Day-by-Day Summary of Disease Manifestations
Day 0 through Day 2 PI
Day 3 PI
Day 4 PI
Day 5 PI
Day 6 PI
Day 7 PI
Day 8 PI
Days 9–10 PI
4.2. MVD Manifestations as Triggers for Treatment or for a Delayed Time-to-Treat Approach
4.2.1. Body Temperature
4.2.2. Systemic Viremia
4.2.3. Lymphocytolysis
4.2.4. Coagulopathy
4.2.5. Hepatocellular Damage
5. Conclusions
Comparison to Two Other MARV Natural History Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. About Marburg Virus Disease. Available online: https://www.cdc.gov/vhf/marburg/about.html (accessed on 20 October 2023).
- Leroy, E.M.; Kumulungui, B.; Pourrut, X.; Rouquet, P.; Hassanin, A.; Yaba, P.; Delicat, A.; Paweska, J.T.; Gonzalez, J.P.; Swanepoel, R. Fruit bats as reservoirs of Ebola virus. Nature 2005, 438, 575–576. [Google Scholar] [CrossRef] [PubMed]
- Towner, J.S.; Amman, B.R.; Sealy, T.K.; Carroll, S.A.; Comer, J.A.; Kemp, A.; Swanepoel, R.; Paddock, C.D.; Balinandi, S.; Khristova, M.L.; et al. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 2009, 5, e1000536. [Google Scholar] [CrossRef] [PubMed]
- Amman, B.R.; Carroll, S.A.; Reed, Z.D.; Sealy, T.K.; Balinandi, S.; Swanepoel, R.; Kemp, A.; Erickson, B.R.; Comer, J.A.; Campbell, S.; et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 2012, 8, e1002877. [Google Scholar] [CrossRef] [PubMed]
- Siegert, R.; Shu, H.L.; Slenczka, W.; Peters, D.; Muller, G. On the etiology of an unknown human infection originating from monkeys. Dtsch. Med. Wochenschr. 1967, 92, 2341–2343. [Google Scholar] [CrossRef] [PubMed]
- Languon, S.; Quaye, O. Filovirus Disease Outbreaks: A Chronological Overview. Virology 2019, 10, 1178122X19849927. [Google Scholar] [CrossRef]
- Koundouno, F.R.; Kafetzopoulou, L.E.; Faye, M.; Renevey, A.; Soropogui, B.; Ifono, K.; Nelson, E.V.; Kamano, A.A.; Tolno, C.; Annibaldis, G.; et al. Detection of Marburg Virus Disease in Guinea. N. Engl. J. Med. 2022, 386, 2528–2530. [Google Scholar] [CrossRef] [PubMed]
- Araf, Y.; Maliha, S.T.; Zhai, J.; Zheng, C. Marburg virus outbreak in 2022: A public health concern. Lancet Microbe 2023, 4, e9. [Google Scholar] [CrossRef]
- WHO. Marburg Virus Disease—United Republic of Tanzania. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2023-DON451 (accessed on 24 March 2023).
- Harris, E. WHO: Marburg Virus Outbreak Confirmed in Equatorial Guinea. JAMA 2023, 329, 969. [Google Scholar] [CrossRef]
- Bockarie, M.J.; Hanson, J.; Ansumana, R.; Yeboah-Manu, D.; Zumla, A.; Lee, S.S. The re-emergence of Marburg virus Disease in West Africa: How prepared is the sub-region for preventing recurrent zoonotic outbreaks? Int. J. Infect. Dis. 2023, 130, 28–30. [Google Scholar] [CrossRef]
- Callaway, E. Marburg virus outbreak: Researchers race to test vaccines. Nature 2023, 614, 603. [Google Scholar] [CrossRef]
- Sarwar, U.N.; Costner, P.; Enama, M.E.; Berkowitz, N.; Hu, Z.; Hendel, C.S.; Sitar, S.; Plummer, S.; Mulangu, S.; Bailer, R.T.; et al. Safety and immunogenicity of DNA vaccines encoding Ebolavirus and Marburgvirus wild-type glycoproteins in a phase I clinical trial. J. Infect. Dis. 2015, 211, 549–557. [Google Scholar] [CrossRef]
- Kibuuka, H.; Berkowitz, N.M.; Millard, M.; Enama, M.E.; Tindikahwa, A.; Sekiziyivu, A.B.; Costner, P.; Sitar, S.; Glover, D.; Hu, Z.; et al. Safety and immunogenicity of Ebola virus and Marburg virus glycoprotein DNA vaccines assessed separately and concomitantly in healthy Ugandan adults: A phase 1b, randomised, double-blind, placebo-controlled clinical trial. Lancet 2015, 385, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.J.; Houser, K.V.; Hofstetter, A.R.; Ortega-Villa, A.M.; Lee, C.; Preston, A.; Augustine, B.; Andrews, C.; Yamshchikov, G.V.; Hickman, S.; et al. Safety, tolerability, and immunogenicity of the chimpanzee adenovirus type 3-vectored Marburg virus (cAd3-Marburg) vaccine in healthy adults in the USA: A first-in-human, phase 1, open-label, dose-escalation trial. Lancet 2023, 401, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Marzi, A.; Menicucci, A.R.; Engelmann, F.; Callison, J.; Horne, E.J.; Feldmann, F.; Jankeel, A.; Feldmann, H.; Messaoudi, I. Protection Against Marburg Virus Using a Recombinant VSV-Vaccine Depends on T and B Cell Activation. Front. Immunol. 2018, 9, 3071. [Google Scholar] [CrossRef] [PubMed]
- Grant-Klein, R.J.; Altamura, L.A.; Badger, C.V.; Bounds, C.E.; Van Deusen, N.M.; Kwilas, S.A.; Vu, H.A.; Warfield, K.L.; Hooper, J.W.; Hannaman, D.; et al. Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges. Hum. Vaccin. Immunother. 2015, 11, 1991–2004. [Google Scholar] [CrossRef]
- Daddario-DiCaprio, K.M.; Geisbert, T.W.; Geisbert, J.B.; Stroher, U.; Hensley, L.E.; Grolla, A.; Fritz, E.A.; Feldmann, F.; Feldmann, H.; Jones, S.M. Cross-protection against Marburg virus strains by using a live, attenuated recombinant vaccine. J. Virol. 2006, 80, 9659–9666. [Google Scholar] [CrossRef]
- Porter, D.P.; Weidner, J.M.; Gomba, L.; Bannister, R.; Blair, C.; Jordan, R.; Wells, J.; Wetzel, K.; Garza, N.; Van Tongeren, S.; et al. Remdesivir (GS-5734) Is Efficacious in Cynomolgus Macaques Infected With Marburg Virus. J. Infect. Dis. 2020, 222, 1894–1901. [Google Scholar] [CrossRef]
- Warren, T.K.; Whitehouse, C.A.; Wells, J.; Welch, L.; Charleston, J.S.; Heald, A.; Nichols, D.K.; Mattix, M.E.; Palacios, G.; Kugleman, J.R.; et al. Delayed Time-to-Treatment of an Antisense Morpholino Oligomer Is Effective against Lethal Marburg Virus Infection in Cynomolgus Macaques. PLoS Negl. Trop. Dis. 2016, 10, e0004456. [Google Scholar] [CrossRef]
- Warren, T.K.; Wells, J.; Panchal, R.G.; Stuthman, K.S.; Garza, N.L.; Van Tongeren, S.A.; Dong, L.; Retterer, C.J.; Eaton, B.P.; Pegoraro, G.; et al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 2014, 508, 402–405. [Google Scholar] [CrossRef]
- Heald, A.E.; Charleston, J.S.; Iversen, P.L.; Warren, T.K.; Saoud, J.B.; Al-Ibrahim, M.; Wells, J.; Warfield, K.L.; Swenson, D.L.; Welch, L.S.; et al. AVI-7288 for Marburg Virus in Nonhuman Primates and Humans. N.Engl. J. Med. 2015, 373, 339–348. [Google Scholar] [CrossRef]
- Nicholas, V.V.; Rosenke, R.; Feldmann, F.; Long, D.; Thomas, T.; Scott, D.P.; Feldmann, H.; Marzi, A. Distinct Biological Phenotypes of Marburg and Ravn Virus Infection in Macaques. J. Infect. Dis. 2018, 218 (Suppl. 5), S458–S465. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Daddario-DiCaprio, K.M.; Geisbert, J.B.; Young, H.A.; Formenty, P.; Fritz, E.A.; Larsen, T.; Hensley, L.E. Marburg virus Angola infection of rhesus macaques: Pathogenesis and treatment with recombinant nematode anticoagulant protein c2. J. Infect. Dis. 2007, 196 (Suppl. 2), S372–S381. [Google Scholar] [CrossRef] [PubMed]
- Woolsey, C.; Geisbert, J.B.; Matassov, D.; Agans, K.N.; Borisevich, V.; Cross, R.W.; Deer, D.J.; Fenton, K.A.; Eldridge, J.H.; Mire, C.E.; et al. Postexposure Efficacy of Recombinant Vesicular Stomatitis Virus Vectors Against High and Low Doses of Marburg Virus Variant Angola in Nonhuman Primates. J. Infect. Dis. 2018, 218 (Suppl. 5), S582–S587. [Google Scholar] [CrossRef] [PubMed]
- Thi, E.P.; Mire, C.E.; Ursic-Bedoya, R.; Geisbert, J.B.; Lee, A.C.H.; Agans, K.N.; Robbins, M.; Deer, D.J.; Fenton, K.A.; MacLachlan, I.; et al. Marburg virus infection in nonhuman primates: Therapeutic treatment by lipid-encapsulated siRNA. Sci. Transl. Med. 2014, 6, 250ra116. [Google Scholar] [CrossRef] [PubMed]
- Mire, C.E.; Geisbert, J.B.; Borisevich, V.; Fenton, K.A.; Agans, K.N.; Flyak, A.I.; Deer, D.J.; Steinkellner, H.; Bohorov, O.; Bohorova, N.; et al. Therapeutic treatment of Marburg and Ravn virus infection in nonhuman primates with a human monoclonal antibody. Sci. Transl. Med. 2017, 9, eaai8711. [Google Scholar] [CrossRef] [PubMed]
- Alfson, K.J.; Goez-Gazi, Y.; Gazi, M.; Chou, Y.L.; Niemuth, N.A.; Mattix, M.E.; Staples, H.M.; Klaffke, B.; Rodriguez, G.F.; Bartley, C.; et al. Development of a Well-Characterized Cynomolgus Macaque Model of Marburg Virus Disease for Support of Vaccine and Therapy Development. Vaccines 2022, 10, 1314. [Google Scholar] [CrossRef] [PubMed]
- Blair, P.W.; Keshtkar-Jahromi, M.; Psoter, K.J.; Reisler, R.B.; Warren, T.K.; Johnston, S.C.; Goff, A.J.; Downey, L.G.; Bavari, S.; Cardile, A.P. Virulence of Marburg Virus Angola Compared to Mt. Elgon (Musoke) in Macaques: A Pooled Survival Analysis. Viruses 2018, 10, 658. [Google Scholar] [CrossRef]
- Comer, J.E.; Brasel, T.; Massey, S.; Beasley, D.W.; Cirimotich, C.M.; Sanford, D.C.; Chou, Y.L.; Niemuth, N.A.; Novak, J.; Sabourin, C.L.; et al. Natural History of Marburg Virus Infection to Support Medical Countermeasure Development. Viruses 2022, 14, 2291. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Bailey, M.; Geisbert, J.B.; Asiedu, C.; Roederer, M.; Grazia-Pau, M.; Custers, J.; Jahrling, P.; Goudsmit, J.; Koup, R.; et al. Vector choice determines immunogenicity and potency of genetic vaccines against Angola Marburg virus in nonhuman primates. J. Virol. 2010, 84, 10386–10394. [Google Scholar] [CrossRef]
- Johnston, S.C.; Lin, K.L.; Twenhafel, N.A.; Raymond, J.L.; Shamblin, J.D.; Wollen, S.E.; Wlazlowski, C.B.; Wilkinson, E.R.; Botto, M.A.; Goff, A.J. Dose Response of MARV/Angola Infection in Cynomolgus Macaques following IM or Aerosol Exposure. PLoS ONE 2015, 10, e0138843. [Google Scholar] [CrossRef]
- Lehrer, A.T.; Chuang, E.; Namekar, M.; Williams, C.A.; Wong, T.A.S.; Lieberman, M.M.; Granados, A.; Misamore, J.; Yalley-Ogunro, J.; Andersen, H.; et al. Recombinant Protein Filovirus Vaccines Protect Cynomolgus Macaques From Ebola, Sudan, and Marburg Viruses. Front. Immunol. 2021, 12, 703986. [Google Scholar] [CrossRef] [PubMed]
- Glaze, E.R.; Roy, M.J.; Dalrymple, L.W.; Lanning, L.L. A Comparison of the Pathogenesis of Marburg Virus Disease in Humans and Nonhuman Primates and Evaluation of the Suitability of These Animal Models for Predicting Clinical Efficacy under the ‘Animal Rule’. Comp. Med. 2015, 65, 241–259. [Google Scholar] [PubMed]
- Shifflett, K.; Marzi, A. Marburg virus pathogenesis-differences and similarities in humans and animal models. Virol. J. 2019, 16, 165. [Google Scholar] [CrossRef] [PubMed]
- Jeffs, B.; Roddy, P.; Weatherill, D.; de la Rosa, O.; Dorion, C.; Iscla, M.; Grovas, I.; Palma, P.P.; Villa, L.; Bernal, O.; et al. The Medecins Sans Frontieres intervention in the Marburg hemorrhagic fever epidemic, Uige, Angola, 2005. I. Lessons learned in the hospital. J. Infect. Dis. 2007, 196 (Suppl. 2), S154–S161. [Google Scholar] [CrossRef]
- Roddy, P.; Weatherill, D.; Jeffs, B.; Abaakouk, Z.; Dorion, C.; Rodriguez-Martinez, J.; Palma, P.P.; de la Rosa, O.; Villa, L.; Grovas, I.; et al. The Medecins Sans Frontieres intervention in the Marburg hemorrhagic fever epidemic, Uige, Angola, 2005. II. lessons learned in the community. J. Infect. Dis. 2007, 196 (Suppl. 2), S162–S167. [Google Scholar] [CrossRef] [PubMed]
- Roddy, P.; Thomas, S.L.; Jeffs, B.; Nascimento Folo, P.; Pablo Palma, P.; Moco Henrique, B.; Villa, L.; Damiao Machado, F.P.; Bernal, O.; Jones, S.M.; et al. Factors associated with Marburg hemorrhagic fever: Analysis of patient data from Uige, Angola. J. Infect. Dis. 2010, 201, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Adjemian, J.; Farnon, E.C.; Tschioko, F.; Wamala, J.F.; Byaruhanga, E.; Bwire, G.S.; Kansiime, E.; Kagirita, A.; Ahimbisibwe, S.; Katunguka, F.; et al. Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda Districts, Uganda, 2007. J. Infect. Dis. 2011, 204 (Suppl. 3), S796–S799. [Google Scholar] [CrossRef]
- Borchert, M.; Muyembe-Tamfum, J.J.; Colebunders, R.; Libande, M.; Sabue, M.; Van Der Stuyft, P. Short communication: A cluster of Marburg virus disease involving an infant. Trop. Med. Int. Health 2002, 7, 902–906. [Google Scholar] [CrossRef]
- Gear, J.S.; Cassel, G.A.; Gear, A.J.; Trappler, B.; Clausen, L.; Meyers, A.M.; Kew, M.C.; Bothwell, T.H.; Sher, R.; Miller, G.B.; et al. Outbreake of Marburg virus disease in Johannesburg. BMJ 1975, 4, 489–493. [Google Scholar] [CrossRef]
- Colebunders, R.; Tshomba, A.; Van Kerkhove, M.D.; Bausch, D.G.; Campbell, P.; Libande, M.; Pirard, P.; Tshioko, F.; Mardel, S.; Mulangu, S.; et al. Marburg hemorrhagic fever in Durba and Watsa, Democratic Republic of the Congo: Clinical documentation, features of illness, and treatment. J. Infect. Dis. 2007, 196 (Suppl. 2), S148–S153. [Google Scholar] [CrossRef]
- Ndayimirije, N.; Kindhauser, M.K. Marburg hemorrhagic fever in Angola--fighting fear and a lethal pathogen. N. Engl. J. Med. 2005, 352, 2155–2157. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.L.; Siegert, R.; Slenczka, W. The pathogenesis and epidemiology of the “Marburg-virus” infection. Ger. Med. Mon. 1969, 14, 7–10. [Google Scholar] [PubMed]
- Council, N.R. Guide for the Care and Use of Laboratory Animals, 8th ed.; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Matassov, D.; Mire, C.E.; Latham, T.; Geisbert, J.B.; Xu, R.; Ota-Setlik, A.; Agans, K.N.; Kobs, D.J.; Wendling, M.Q.S.; Burnaugh, A.; et al. Single-Dose Trivalent VesiculoVax Vaccine Protects Macaques from Lethal Ebolavirus and Marburgvirus Challenge. J. Virol. 2018, 92, e01190-17. [Google Scholar] [CrossRef]
- Warren, T.; Zumbrun, E.; Weidner, J.M.; Gomba, L.; Rossi, F.; Bannister, R.; Tarrant, J.; Reed, M.; Lee, E.; Raymond, J.L.; et al. Characterization of Ebola Virus Disease (EVD) in Rhesus Monkeys for Development of EVD Therapeutics. Viruses 2020, 12, 92. [Google Scholar] [CrossRef] [PubMed]
- Shurtleff, A.C.; Biggins, J.E.; Keeney, A.E.; Zumbrun, E.E.; Bloomfield, H.A.; Kuehne, A.; Audet, J.L.; Alfson, K.J.; Griffiths, A.; Olinger, G.G.; et al. Standardization of the filovirus plaque assay for use in preclinical studies. Viruses 2012, 4, 3511–3530. [Google Scholar] [CrossRef] [PubMed]
- Kortepeter, M.G.; Bausch, D.G.; Bray, M. Basic clinical and laboratory features of filoviral hemorrhagic fever. J. Infect. Dis. 2011, 204 (Suppl. 3), S810–S816. [Google Scholar] [CrossRef]
- Brauburger, K.; Hume, A.J.; Muhlberger, E.; Olejnik, J. Forty-five years of Marburg virus research. Viruses 2012, 4, 1878–1927. [Google Scholar] [CrossRef]
- Kortepeter, M.G.; Dierberg, K.; Shenoy, E.S.; Cieslak, T.J.; Medical Countermeasures Working Group of the National Ebola Training; Education Center’s Special Pathogens Research Network. Marburg virus disease: A summary for clinicians. Int. J. Infect. Dis. 2020, 99, 233–242. [Google Scholar] [CrossRef]
- Bennett, R.S.; Logue, J.; Liu, D.X.; Reeder, R.J.; Janosko, K.B.; Perry, D.L.; Cooper, T.K.; Byrum, R.; Ragland, D.; St Claire, M.; et al. Kikwit Ebola Virus Disease Progression in the Rhesus Monkey Animal Model. Viruses 2020, 12, 753. [Google Scholar] [CrossRef]
Event | Days Pre-Inoculation | Days Post-Inoculation (PI) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−9 | −8 | −7 to −2 | −1 | 0 | 1–2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12–13 (T f) | |
Veterinary Release | X | |||||||||||||||
Move to Containment | X | |||||||||||||||
Acclimation | X | X | X | X | ||||||||||||
Telemetry a | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
MARV Challenge/Mock Exposure | X | |||||||||||||||
Tether Assembly | X | |||||||||||||||
Catheter Connection | X | |||||||||||||||
Awake Observations | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | |
Observation (Anesthetized) | X | X | X | |||||||||||||
Health Status Checks b | X | X | X | X | X | |||||||||||
Plaque Assay | X c | X | X | X | X | X | ||||||||||
Polymerase Chain Reaction (PCR) | X | X c | X d | X d | X | X | X | X | X | |||||||
Hematology | X c | X | X | X | X | X | X | X | ||||||||
Clinical Chemistry | X c | X | X | X | X | X | X | X | ||||||||
Coagulation | X c | X | X | X e | X | X | X | X |
Group | Animal ID | Sex | Weight at Day 0 (kg) | Age at Day 0 (Years) | Time of Challenge on Day 0 | Day PI Deceased | Time Deceased c | Elapsed Time from Challenge to Death | |
---|---|---|---|---|---|---|---|---|---|
(Days) | (Hours) | ||||||||
Mock | 1 | M | 4.1113 | 5.1 | 10:38 | 12 | 10:43 | 12.00 | 288.1 |
2 | M | 3.7624 | 4.3 | 10:47 | 13 | 09:24 | 12.94 | 310.6 | |
3 | F | 3.6605 | 4.3 | 10:55 | 12 | 09:44 | 11.95 | 286.8 | |
4 | F | 3.4912 | 4.3 | 10:59 | 12 | 10:25 | 11.98 | 287.4 | |
5 | M | 4.0521 | 4.4 | 11:06 | 13 | 09:32 | 12.93 | 310.4 | |
6 | M | 3.9484 | 4.6 | 11:14 | 13 | 09:46 | 12.94 | 310.5 | |
MARV | 7 a | M | 4.4746 | 5.1 | 11:49 | 9 | 01:30 | 8.57 | 205.7 |
8 | M | 4.3130 | 4.2 | 11:54 | 9 | 19:59 | 9.34 | 224.1 | |
9 | F | 3.6690 | 3.5 | 11:59 | 8 | 17:11 | 8.22 | 197.2 | |
10 | M | 4.3382 | 4.2 | 12:04 | 10 | 07:00 | 9.79 | 234.9 | |
11 a | F | 3.4098 | 4.0 | 12:11 | 9 | 06:00 | 8.74 | 209.8 | |
12 | M | 3.8370 | 4.4 | 12:16 | 8 | 08:17 | 7.83 | 188.0 | |
13 | M | 4.436 b | 4.3 | 12:25 | 8 | 08:26 | 7.83 | 188.0 | |
14 | F | 4.0955 | 4.3 | 12:34 | 8 | 17:06 | 8.19 | 196.5 | |
15 | F | 3.9169 | 4.1 | 12:42 | 9 | 16:17 | 9.15 | 219.6 | |
16 a | F | 4.2558 | 5.1 | 12:51 | 8 | 01:00 | 7.51 | 180.1 | |
17 | M | 3.7140 | 4.7 | 13:06 | 8 | 11:42 | 7.94 | 190.6 | |
18 | M | 4.1870 | 4.6 | 13:16 | 9 | 00:04 | 8.45 | 202.8 | |
Mean for MARV-Exposed Animals | 8.46 | 203.1 | |||||||
Range for MARV-Exposed Animals | 7.51–9.79 | 180.1–234.9 |
Animal ID | Elapsed Time from Challenge to Responsiveness Score of 1 (Hours) | Elapsed Time from Onset of Responsiveness Score of 1 to Time Deceased b (Hours) |
---|---|---|
7 a | 131.8 | 73.9 |
8 | 162.2 | 61.9 |
9 | 138.2 | 59.0 |
10 | 114.1 | 120.9 |
11 a | 162.0 | 47.9 |
12 | 113.9 | 74.1 |
13 | 118.6 | 69.4 |
14 | 137.7 | 58.9 |
15 | 161.5 | 58.0 |
16 a | 130.9 | 49.3 |
17 | 113.1 | 77.5 |
18 | 137.0 | 65.8 |
Mean | 135.1 | 68.0 |
Range | 113.1–162.2 | 47.9–120.9 |
Day PI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameter (% Impacted) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Death | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 92 | 100 |
Responsiveness Score ≥ 1 | 0 | 0 | 0 | 0 | 0 | 50 | 75 | 100 | 100 | 100 | 100 |
Body Temp. (Significant Elevation) | 0 | 8 | 8 | 50 | 92 | 100 | 100 | 100 | 67 | 33 | 0 |
Fever | 0 | 0 | 0 | 17 | 67 | 92 | 100 | 92 | 50 | 33 | 0 |
RT-PCR (>LOD) | 0 | 25 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | ||
RT-PCR (>LLOQ) | 0 | 0 | 42 | 100 | 100 | 100 | 100 | 100 | 100 | ||
Lymphocyte (↓) | 83 | 92 | 92 | 90 | 73 | 17 | 0 | 0 | |||
APTT (↑) | — | 92 | 100 | 100 | 100 | 100 | 100 | 100 | |||
AST (↑) | — | — | 75 | 100 | 100 | 100 | |||||
ALP (↑) | — | — | 92 | 100 | 100 | 100 | 100 | 100 |
Parameter | Zumbrun et al. | Alfson et al. [28] | Comer et al. [30] |
---|---|---|---|
Quality System | GLP | A quality system consistent with GLP | Well-documented/controlled |
Cynomolgus Origin | Cambodian | Chinese | Asiatic, bred in Vietnam |
Animal Age (years) | 3.5–5.1 | 3.39–4.10 | 2.5–3.2 |
Animal Weight (kg) | 3.41–4.47 | 2.55–3.77 | 2.4–3.2 |
Challenge Stock | P3 (USAMRIID in-house stock) | P3 (UTMB in-house stock) | P2 (BEI Resources) |
Challenge Dose (Target; Actual) | 1000 pfu; 1125 pfu | 1000 pfu; 222–360 pfu | 1000 pfu; 6500–8000 pfu |
n = MARV, n = Mock | 12 MARV; 6 mock | 8 MARV; 2 mock a | 12 MARV; 6 mock |
#Males vs. #Females | 11 males, 7 females | 5 males; 5 females | 9 males; 9 females |
Survival | 8.56 days (mean) | 7.26 (mean b,c) | 8.13 days (mean b) |
8.33 days (median) | 7.95 days (Kaplan–Meier median) | 7.31 days (median) | |
7.51–9.79 days (range) | 7–9 days (range c) | 6.43–7.98 days (range) | |
d8 (n = 5), d9 (n = 6), d10 (n = 1) | d7 (n = 1), d8 (n = 5), d9 (n = 2) | d6 (n = 1), d7 (n = 8), d8 (n = 3) | |
Euthanasia Criteria | Scoring system with a single parameter (responsiveness), with euthanasia triggered by a score of 4. | Scoring system with 13 parameters, including: food/enrichment/fluid consumption, stool, dehydration, appearance (rough hair/coat), nasal discharge, bleeding, body weight, rectal temperature, petechia, labored/agonal breathing, and responsiveness. Euthanasia triggered by total score ≥ 15, or combination between responsiveness score and temperature change and/or chemistry changes above a predetermined threshold. | Score system with 5 parameters, including: respiration, food consumption, feces/urine, activity/appearance, bleeding/hemorrhage/rash. Euthanasia triggered by a score of ≥10. |
Observation Frequency | up to 5× daily | up to 4× daily | 2–3× daily |
Blinding | No | Yes (veterinary technicians, veterinarians, in vitro staff, necropsy staff, pathologist) | No |
Catheters vs. Sedated for Blood Collection | Catheters d | Sedation | Sedation |
Blood Collection Timepoints (Days PI) | 0, 3 (a.m.), 3 (p.m.), 4 (a.m.), 4 (p.m.), 5, 6, 7, 8, 9, 10, 12 | −7, 0, 2, 3, 5, 7, 9, 11, 13, 14 | −4, 0, 3, 5, 7, 10, 14, 21, 28 |
Telemetry | DSI-M00; temperature and activity | DSI-M00; temperature and activity | DST Micro-T Star Odi; temperature |
RT-PCR | plasma | serum | serum |
Plaque Assay | serum | serum | serum |
CBC | yes | yes | yes |
Serum Chemistry | yes | yes | yes |
Coagulation | yes | yes | yes |
Immunological Profile | no | yes (cytokine and chemokine) | no |
IgG ELISA | no | no | yes (no + samples) |
Anatomical Pathology | yes | yes | yes |
Histology | yes | yes | yes |
IHC | yes | no | no |
ISH | yes | no | no |
Tissue Viral Load | no | yes | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zumbrun, E.E.; Garvey, C.B.; Wells, J.B.; Lynn, G.C.; Van Tongeren, S.; Steffens, J.T.; Wetzel, K.S.; Gomba, L.M.; O’Brien, K.A.; Rossi, F.D.; et al. Characterization of the Cynomolgus Macaque Model of Marburg Virus Disease and Assessment of Timing for Therapeutic Treatment Testing. Viruses 2023, 15, 2335. https://doi.org/10.3390/v15122335
Zumbrun EE, Garvey CB, Wells JB, Lynn GC, Van Tongeren S, Steffens JT, Wetzel KS, Gomba LM, O’Brien KA, Rossi FD, et al. Characterization of the Cynomolgus Macaque Model of Marburg Virus Disease and Assessment of Timing for Therapeutic Treatment Testing. Viruses. 2023; 15(12):2335. https://doi.org/10.3390/v15122335
Chicago/Turabian StyleZumbrun, Elizabeth E., Carly B. Garvey, Jay B. Wells, Ginger C. Lynn, Sean Van Tongeren, Jesse T. Steffens, Kelly S. Wetzel, Laura M. Gomba, Kristan A. O’Brien, Franco D. Rossi, and et al. 2023. "Characterization of the Cynomolgus Macaque Model of Marburg Virus Disease and Assessment of Timing for Therapeutic Treatment Testing" Viruses 15, no. 12: 2335. https://doi.org/10.3390/v15122335