Next Article in Journal
Phenology-Based Method for Mapping Tropical Evergreen Forests by Integrating of MODIS and Landsat Imagery
Next Article in Special Issue
Distribution of Soil Organic Carbon in Riparian Forest Soils Affected by Frequent Floods (Southern Québec, Canada)
Previous Article in Journal
Biocontrol of Fusarium circinatum Infection of Young Pinus radiata Trees
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Forests 2017, 8(2), 33; doi:10.3390/f8010033

Soil Microbial Communities in Natural and Managed Cloud Montane Forests

3
Biodiversity Research Center, Academia Sinica, Nangang, Taipei 11529, Taiwan
2
Environmental Monitoring and Research Division, Monitoring and Research Department, Metropolitan Water Reclamation District of Greater Chicago, 6001 W. Pershing Road, Cicero, IL 60804, USA
1
Mackay Junior College of Medicine, Nursing and Management, Beitou, Taipei 112, Taiwan
*
Author to whom correspondence should be addressed.
Received: 7 December 2016 / Accepted: 23 January 2017 / Published: 26 January 2017
View Full-Text   |   Download PDF [1140 KB, uploaded 10 February 2017]   |  

Abstract

Forest management often results in changes in soil microbial communities. To understand how forest management can change microbial communities, we studied soil microbial abundance and community structure in a natural Chamaecyparis (NCP) forest, a disturbed Chamaecyparis (DCP) forest, a secondary (regenerated) Chamaecyparis (SCP) forest and a secondary (reforested) Cryptomeria (SCD) forest. We analyzed soil microbial abundance by measuring phospholipid fatty acids (PLFAs) and microbial community structure by denaturing gradient gel electrophoresis (DGGE) in the studied forest soils. The content of the soil PLFA fungal biomarker decreased from NCP to SCP, DCP and SCD forest soils, associated with the degree of disturbance of forest management. The ratio of soil Gram positive–to-negative bacteria and the stress index (16:1ω7t to 16:1ω7c) increased from NCP to SCP and DCP soils; thus, disturbed forests except for SCD showed increased soil microbial stress. Principal component analysis of soil microbial groups by PLFAs separated the four forest soils into three clusters: NCP, DCP and SCP, and SCD soil. The DGGE analysis showed no difference in the microbial community structure for NCP, DCP and SCP soils, but the community structure differed between SCD and the three other forest soils. In cloud montane forests, disturbance due to forest management had only a slight influence on the soil microbial community, whereas reforestation with different species largely changed the soil microbial community structure. View Full-Text
Keywords: PLFA; DGGE; reforestation; microbial community; forest management PLFA; DGGE; reforestation; microbial community; forest management
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Chang, E.-H.; Tian, G.; Chiu, C.-Y. Soil Microbial Communities in Natural and Managed Cloud Montane Forests. Forests 2017, 8, 33.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top