Next Article in Journal
Making the National Adaptation Programme of Action (NAPA) More Responsive to the Livelihood Needs of Tree Planting Farmers, Drawing on Previous Experience in Dryland Sudan
Next Article in Special Issue
Sustainable Biofuels from Forests: Woody Biomass
Previous Article in Journal
Best Practices for Tourism Concessions in Protected Areas: A Review of the Field
Previous Article in Special Issue
Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence
Article Menu

Export Article

Open AccessReview
Forests 2011, 2(4), 929-947;

Commercializing Biorefinery Technology: A Case for the Multi-Product Pathway to a Viable Biorefinery

Applied Biorefinery Sciences, LLC (“ABS”,, Syracuse, NY 13219, USA
Department of Paper and Bioprocess Engineering (PBE), SUNY College of Environmental Science & Forestry (“SUNY ESF”), 1 Forestry Drive, Syracuse, NY 13210, USA
Authors to whom correspondence should be addressed.
Received: 20 July 2011 / Revised: 30 September 2011 / Accepted: 1 November 2011 / Published: 9 November 2011
(This article belongs to the Special Issue Sustainable Biofuels From Forests: Woody Biomass)
View Full-Text   |   Download PDF [824 KB, uploaded 9 November 2011]


While there may be many reasons why very interesting science ideas never reach commercial practice, one of the more prevalent is that the reaction or process, which is scientifically possible, cannot be made efficient enough to achieve economic viability. One pathway to economic viability for many business sectors is the multi-product portfolio. Research, development, and deployment of viable biorefinery technology must meld sound science with engineering and business economics. It is virtually axiomatic that increased value can be generated by isolating relatively pure substances from heterogeneous raw materials. Woody biomass is a heterogeneous raw material consisting of the major structural components, cellulose, lignin, and hemicelluloses, as well as minor components, such as extractives and ash. Cellulose is a linear homopolymer of D-glucopyrano-units with β-D(1®4) connections and is the wood component most resistant to chemical and biological degradation. Lignin is a macromolecule of phenylpropanoid units, second to cellulose in bio-resistance, and is the key component that is sought for removal from woody biomass in chemical pulping. Hemicelluloses are a collection of heteropolysaccharides, comprised mainly of 5- and 6-carbon sugars. Extractives, some of which have high commercial value, are a collection of low molecular weight organic and inorganic woody materials that can be removed, to some extent, under mild conditions. Applied Biorefinery Sciences, LLC (a private, New York, USA based company) is commercializing a value-optimization pathway (the ABS Process™) for generating a multi-product portfolio by isolating and recovering homogeneous substances from each of the above mentioned major and minor woody biomass components. The ABS Process™ incorporates the patent pending, core biorefinery technology, “hot water extraction”, as developed at the State University of New York College of Environmental Science and Forestry (SUNY-ESF). Hot water extraction in the absence of mineral acids and bases is preferred because of its ability to generate multiple high value output products without chemical input, recovery, or disposal costs. Instead of added chemicals in the cooking phase, the ABS Process™ relies upon an autocatalytic reaction in which acetyl groups, bound through an ester linkage to hemicellulose chains, are hydrolyzed at high temperature in water. The resulting acidic conditions (final pH ~3.5) and temperatures of 160–170 °C permit further solubilization and diffusion of oligomeric 5- and 6-carbon sugars, acetic acid, aromatic substances, monomeric sugars, and other trace compounds into the extract solution. These conditions also avoid extensive degradation of monosaccharides, enabling membrane fractionation and other chemical separation techniques to be used in the following separations. A range of separation techniques are applied on the extract solution to isolate and purify fermentable sugars, acetic acid, lignin, furfural, formic acid, other hemicellulose related compounds, lignin, lignin degradation products, and phenolic extractives for commercial sale. The extracted lignocellulosic biomass, with reduced hemicellulose content and is thus less heterogeneous, carries the value-added advantages of: (1) enhanced product characteristics, and (2) reduced energy and chemical manufacturing costs. Thus, by fractionating woody biomass into more homogeneous substances, the ABS Process™ holds potential as an economically viable pathway for capturing sustainable, renewable value not currently realized from lignocellulosic biomass. View Full-Text
Keywords: ABS Process™; hemicelluloses; hot water extraction; lignin; woody biomass ABS Process; hemicelluloses; hot water extraction; lignin; woody biomass
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Share & Cite This Article

MDPI and ACS Style

Amidon, T.E.; Bujanovic, B.; Liu, S.; Howard, J.R. Commercializing Biorefinery Technology: A Case for the Multi-Product Pathway to a Viable Biorefinery. Forests 2011, 2, 929-947.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Forests EISSN 1999-4907 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top