Next Article in Journal / Special Issue
Finding All Solutions and Instances of Numberlink and Slitherlink by ZDDs
Previous Article in Journal / Special Issue
Any Monotone Function Is Realized by Interlocked Polygons
Article Menu

Article Versions

Export Article

Open AccessArticle
Algorithms 2012, 5(1), 158-175; doi:10.3390/a5010158

An Integer Programming Approach to Solving Tantrix on Fixed Boards

1
Mitsubishi Electric Information Network Corp., 8-1-1 Tsukaguchi-Honmachi, Amagasaki 661-8611, Japan
2
Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
*
Author to whom correspondence should be addressed.
Received: 15 December 2011 / Revised: 9 March 2012 / Accepted: 14 March 2012 / Published: 22 March 2012
(This article belongs to the Special Issue Puzzle/Game Algorithms)
Download PDF [6813 KB, uploaded 22 March 2012]

Abstract

Tantrix (Tantrix R ⃝ is a registered trademark of Colour of Strategy Ltd. in New Zealand, and of TANTRIX JAPAN in Japan, respectively, under the license of M. McManaway, the inventor.) is a puzzle to make a loop by connecting lines drawn on hexagonal tiles, and the objective of this research is to solve it by a computer. For this purpose, we first give a problem setting of solving Tantrix as making a loop on a given fixed board. We then formulate it as an integer program by describing the rules of Tantrix as its constraints, and solve it by a mathematical programming solver to have a solution. As a result, we establish a formulation that can solve Tantrix of moderate size, and even when the solutions are invalid only by elementary constraints, we achieved it by introducing additional constraints and re-solve it. By this approach we succeeded to solve Tantrix of size up to 60.
Keywords: combinatorial game theory; integer programming; mathematical programming solver; recreational mathematics; subloop elimination combinatorial game theory; integer programming; mathematical programming solver; recreational mathematics; subloop elimination
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kino, F.; Uno, Y. An Integer Programming Approach to Solving Tantrix on Fixed Boards. Algorithms 2012, 5, 158-175.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Algorithms EISSN 1999-4893 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top