Algorithms 2011, 4(4), 307-333; doi:10.3390/a4040307
Article

A Catalog of Self-Affine Hierarchical Entropy Functions

Department of Electrical & Computer Engineering, University of Minnesota Twin Cities, 200 Union Street SE, Minneapolis, MN 55455, USA
Received: 23 September 2011; in revised form: 18 October 2011 / Accepted: 30 October 2011 / Published: 1 November 2011
(This article belongs to the Special Issue Data Compression, Communication and Processing)
PDF Full-text Download PDF Full-Text [320 KB, Updated Version, uploaded 4 November 2011 14:52 CET]
The original version is still available [319 KB, uploaded 1 November 2011 12:19 CET]
Abstract: For fixed k ≥ 2 and fixed data alphabet of cardinality m, the hierarchical type class of a data string of length n = kj for some j ≥ 1 is formed by permuting the string in all possible ways under permutations arising from the isomorphisms of the unique finite rooted tree of depth j which has n leaves and k children for each non-leaf vertex. Suppose the data strings in a hierarchical type class are losslessly encoded via binary codewords of minimal length. A hierarchical entropy function is a function on the set of m-dimensional probability distributions which describes the asymptotic compression rate performance of this lossless encoding scheme as the data length n is allowed to grow without bound. We determine infinitely many hierarchical entropy functions which are each self-affine. For each such function, an explicit iterated function system is found such that the graph of the function is the attractor of the system.
Keywords: types; type classes; lossless compression; hierarchical entropy; self-affine functions; iterated function systems

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Kieffer, J. A Catalog of Self-Affine Hierarchical Entropy Functions. Algorithms 2011, 4, 307-333.

AMA Style

Kieffer J. A Catalog of Self-Affine Hierarchical Entropy Functions. Algorithms. 2011; 4(4):307-333.

Chicago/Turabian Style

Kieffer, John. 2011. "A Catalog of Self-Affine Hierarchical Entropy Functions." Algorithms 4, no. 4: 307-333.

Algorithms EISSN 1999-4893 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert