Next Article in Journal
An Enhanced Dynamic Spectrum Allocation Algorithm Based on Cournot Game in Maritime Cognitive Radio Communication System
Next Article in Special Issue
Mapping Higher-Order Network Flows in Memory and Multilayer Networks with Infomap
Previous Article in Journal
Comparative Study of Type-2 Fuzzy Particle Swarm, Bee Colony and Bat Algorithms in Optimization of Fuzzy Controllers
Previous Article in Special Issue
Post-Processing Partitions to Identify Domains of Modularity Optimization
Article Menu

Export Article

Open AccessArticle
Algorithms 2017, 10(3), 102; doi:10.3390/a10030102

Local Community Detection in Dynamic Graphs Using Personalized Centrality

School of Computational Science and Engineering, Georgia Tech, Atlanta, GA 30332, USA
This paper is an extended version of our paper published in ICCS 2017, ASONAM 2017, and GABB 2016.
*
Author to whom correspondence should be addressed.
Received: 31 May 2017 / Revised: 22 August 2017 / Accepted: 23 August 2017 / Published: 29 August 2017
(This article belongs to the Special Issue Algorithms for Community Detection in Complex Networks)
View Full-Text   |   Download PDF [840 KB, uploaded 29 August 2017]   |  

Abstract

Analyzing massive graphs poses challenges due to the vast amount of data available. Extracting smaller relevant subgraphs allows for further visualization and analysis that would otherwise be too computationally intensive. Furthermore, many real data sets are constantly changing, and require algorithms to update as the graph evolves. This work addresses the topic of local community detection, or seed set expansion, using personalized centrality measures, specifically PageRank and Katz centrality. We present a method to efficiently update local communities in dynamic graphs. By updating the personalized ranking vectors, we can incrementally update the corresponding local community. Applying our methods to real-world graphs, we are able to obtain speedups of up to 60× compared to static recomputation while maintaining an average recall of 0.94 of the highly ranked vertices returned. Next, we investigate how approximations of a centrality vector affect the resulting local community. Specifically, our method guarantees that the vertices returned in the community are the highly ranked vertices from a personalized centrality metric. View Full-Text
Keywords: local community detection; dynamic graphs; personalized centrality metrics local community detection; dynamic graphs; personalized centrality metrics
Figures

Figure 1a

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Nathan, E.; Zakrzewska, A.; Riedy, J.; Bader, D.A. Local Community Detection in Dynamic Graphs Using Personalized Centrality. Algorithms 2017, 10, 102.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Algorithms EISSN 1999-4893 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top