Next Article in Journal
Contradiction Detection with Contradiction-Specific Word Embedding
Previous Article in Journal
Clustering Using an Improved Krill Herd Algorithm
Article Menu

Export Article

Open AccessArticle
Algorithms 2017, 10(2), 57; doi:10.3390/a10020057

A Prediction of Precipitation Data Based on Support Vector Machine and Particle Swarm Optimization (PSO-SVM) Algorithms

1,2,* , 1,2
,
1,2
and
1,2
1
School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
2
Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science and Technology, Nanjing 210044, China
*
Author to whom correspondence should be addressed.
Academic Editor: Javier Del Ser Lorente
Received: 4 April 2017 / Revised: 11 May 2017 / Accepted: 11 May 2017 / Published: 17 May 2017
View Full-Text   |   Download PDF [1547 KB, uploaded 19 May 2017]   |  

Abstract

Precipitation is a very important topic in weather forecasts. Weather forecasts, especially precipitation prediction, poses complex tasks because they depend on various parameters to predict the dependent variables like temperature, humidity, wind speed and direction, which are changing from time to time and weather calculation varies with the geographical location along with its atmospheric variables. To improve the prediction accuracy of precipitation, this context proposes a prediction model for rainfall forecast based on Support Vector Machine with Particle Swarm Optimization (PSO-SVM) to replace the linear threshold used in traditional precipitation. Parameter selection has a critical impact on the predictive accuracy of SVM, and PSO is proposed to find the optimal parameters for SVM. The PSO-SVM algorithm was used for the training of a model by using the historical data for precipitation prediction, which can be useful information and used by people of all walks of life in making wise and intelligent decisions. The simulations demonstrate that prediction models indicate that the performance of the proposed algorithm has much better accuracy than the direct prediction model based on a set of experimental data if other things are equal. On the other hand, simulation results demonstrate the effectiveness and advantages of the SVM-PSO model used in machine learning and further promises the scope for improvement as more and more relevant attributes can be used in predicting the dependent variables. View Full-Text
Keywords: support vector machine; particle swarm optimization; precipitation prediction support vector machine; particle swarm optimization; precipitation prediction
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Du, J.; Liu, Y.; Yu, Y.; Yan, W. A Prediction of Precipitation Data Based on Support Vector Machine and Particle Swarm Optimization (PSO-SVM) Algorithms. Algorithms 2017, 10, 57.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Algorithms EISSN 1999-4893 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top