Materials 2014, 7(1), 16-29; doi:10.3390/ma7010016
Article

Effect of Acid Hydrolysis Conditions on the Properties of Cellulose Nanoparticle-Reinforced Polymethylmethacrylate Composites

1,* email, 1email, 2email, 2email and 2email
Received: 3 October 2013; in revised form: 28 November 2013 / Accepted: 16 December 2013 / Published: 20 December 2013
(This article belongs to the Section Biomaterials)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Cellulose nanoparticles (CNPs) were prepared from microcrystalline cellulose using two concentration levels of sulfuric acid (i.e., 48 wt% and 64 wt% with produced CNPs designated as CNPs-48 and CNPs-64, respectively) followed by high-pressure homogenization. CNP-reinforced polymethylmethacrylate (PMMA) composite films at various CNP loadings were made using solvent exchange and solution casting methods. The ultraviolet-visible (UV-vis) transmittance spectra between 400 and 800 nm showed that CNPs-64/PMMA composites had a significantly higher optical transmittance than that of CNPs-48/PMMA. Their transmittance decreased with increased CNP loadings. The addition of CNPs to the PMMA matrix reduced composite’s coefficient of thermal expansion (CTE), and CNPs-64/PMMA had a lower CTE than CNPs-48/PMMA at the same CNP level. Reinforcement effect was achieved with the addition of CNPs to the PMMA matrix, especially at higher temperature levels. CNPs-64/PMMA exhibited a higher storage modulus compared with CNPs-48/PMMA material. All CNP-reinforced composites showed higher Young’s modulus and tensile strengths than pure PMMA. The effect increased with increased CNP loadings in the PMMA matrix for both CNPs-64/PMMA and CNPs-48/PMMA composites. CNPs affected the Young’s modulus more than they affected the tensile strength.
Keywords: cellulose nanoparticles; PMMA; thermal expansion; mechanical properties
PDF Full-text Download PDF Full-Text [1073 KB, uploaded 20 December 2013 09:59 CET]

Export to BibTeX |
EndNote


MDPI and ACS Style

Han, G.; Huan, S.; Han, J.; Zhang, Z.; Wu, Q. Effect of Acid Hydrolysis Conditions on the Properties of Cellulose Nanoparticle-Reinforced Polymethylmethacrylate Composites. Materials 2014, 7, 16-29.

AMA Style

Han G, Huan S, Han J, Zhang Z, Wu Q. Effect of Acid Hydrolysis Conditions on the Properties of Cellulose Nanoparticle-Reinforced Polymethylmethacrylate Composites. Materials. 2014; 7(1):16-29.

Chicago/Turabian Style

Han, Guangping; Huan, Siqi; Han, Jingquan; Zhang, Zhen; Wu, Qinglin. 2014. "Effect of Acid Hydrolysis Conditions on the Properties of Cellulose Nanoparticle-Reinforced Polymethylmethacrylate Composites." Materials 7, no. 1: 16-29.


Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert