Next Article in Journal
Next Article in Special Issue
Previous Article in Journal
Previous Article in Special Issue
Materials 2011, 4(12), 2231-2243; doi:10.3390/ma4122231
Article

Non-Isothermal Kinetic Analysis of the Crystallization of Metallic Glasses Using the Master Curve Method

1,2,* , 2
, 2
, 2
, 3
 and 2,4
Received: 27 October 2011; in revised form: 12 December 2011 / Accepted: 14 December 2011 / Published: 20 December 2011
(This article belongs to the Special Issue Advances in Bulk Metallic Glasses)
Download PDF [2142 KB, uploaded 20 December 2011]
Abstract: The non-isothermal transformation rate curves of metallic glasses are analyzed with the Master Curve method grounded in the Kolmogorov-Johnson-Mehl-Avrami theory. The method is applied to the study of two different metallic glasses determining the activation energy of the transformation and the experimental kinetic function that is analyzed using Avrami kinetics. The analysis of the crystallization of Cu47Ti33Zr11Ni8Si1 metallic glassy powders gives Ea = 3.8 eV, in good agreement with the calculation by other methods, and a transformation initiated by an accelerating nucleation and diffusion-controlled growth. The other studied alloy is a Nanoperm-type Fe77Nb7B15Cu1 metallic glass with a primary crystallization of bcc-Fe. An activation energy of Ea = 5.7 eV is obtained from the Master Curve analysis. It is shown that the use of Avrami kinetics is not able to explain the crystallization mechanisms in this alloy giving an Avrami exponent of n = 1.
Keywords: metallic glasses; crystallization kinetics; calorimetry metallic glasses; crystallization kinetics; calorimetry
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Torrens-Serra, J.; Venkataraman, S.; Stoica, M.; Kuehn, U.; Roth, S.; Eckert, J. Non-Isothermal Kinetic Analysis of the Crystallization of Metallic Glasses Using the Master Curve Method. Materials 2011, 4, 2231-2243.

AMA Style

Torrens-Serra J, Venkataraman S, Stoica M, Kuehn U, Roth S, Eckert J. Non-Isothermal Kinetic Analysis of the Crystallization of Metallic Glasses Using the Master Curve Method. Materials. 2011; 4(12):2231-2243.

Chicago/Turabian Style

Torrens-Serra, Joan; Venkataraman, Shankar; Stoica, Mihai; Kuehn, Uta; Roth, Stefan; Eckert, Jürgen. 2011. "Non-Isothermal Kinetic Analysis of the Crystallization of Metallic Glasses Using the Master Curve Method." Materials 4, no. 12: 2231-2243.


Materials EISSN 1996-1944 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert