Abrasive Wear Resistance of Ultrafine Ausferritic Ductile Iron Intended for the Manufacture of Gears for Mining Machinery
Abstract
:1. Introduction
2. Experimental Details
2.1. Characteristics of the Testing Methodology
2.2. Characteristics of the Materials Tested
3. Results and Discussion
4. Conclusions
- Ultrafine ausferritic ductile iron exhibits comparable wear resistance to hardened alloy steels.
- Under the influence of abrasive grains, a transformation from austenite to martensite occurs in ultrafine ausferritic ductile iron.
- The effect of surface strengthening in ADI cast irons also occurs under the influence of pressure alone, but it is smaller compared to the effect of the abrasive.
- Micro-scratching, cracking and delamination are typical of abrasive damage in ultrafine ausferritic ductile irons.
- Under the influence of friction, deformation of graphite spheres is observed, which may favour the formation of surface cracks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Gears, Drives and Speed Changers Market to Reach US$176.6 Billion by the Year 2026. Available online: https://www.globenewswire.com/news-release/2022/01/14/2367169/0/en/Global-Gears-Drives-and-Speed-Changers-Market-to-Reach-US-176-6-Billion-by-the-Year-2026.html (accessed on 18 February 2023).
- Machine and Oil Condition Supervision. Available online: https://totalenergies.pl/system/files/atoms/files/rozdzial_22_nadzor_nad_stanem_maszyny_i_oleju.pdf (accessed on 5 May 2023).
- Wang, H.; Li, Z. Safety management of coal mining process. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Jeju Island, Republic of Korea, 2020; Volume 598. [Google Scholar]
- Angeles, E.; Kumral, M. Optimal Inspection and Preventive Maintenance Scheduling of Mining Equipment. J. Fail. Anal. Prev. 2020, 20, 1408–1416. [Google Scholar] [CrossRef]
- Wieczorek, A.N. Designing machinery and equipment in accordance with the principle of sustainable development. Manag. Syst. Prod. Eng. 2015, 1, 28–34. [Google Scholar]
- Ma, H.; Zeng, J.; Feng, R.; Pang, X.; Wang, Q.; Wen, B. Review on dynamics of cracked gear systems. Eng. Fail. Anal. 2015, 55, 224–245. [Google Scholar] [CrossRef]
- Pan, A.X.; Yang, Z.G. Cause analysis and countermeasure on premature failure of a driven gear for the high-speed train. Eng. Fail. Anal. 2022, 139, 106487. [Google Scholar] [CrossRef]
- Ding, H.; Wang, Y.; Yang, Z.; Pfeiffer, O. Nonlinear blind source separation and fault feature extraction method for mining machine diagnosis. Appl. Sci. 2019, 9, 1852. [Google Scholar] [CrossRef] [Green Version]
- Combet, F.; Zimroz, R. A new method for the estimation of the instantaneous speed relative fluctuation in a vibration signal based on the short time scale transform. Mech. Syst. Signal Process. 2009, 23, 1382–1397. [Google Scholar] [CrossRef]
- Tuszynski, W.; Kalbarczyk, M.; Michalak, M.; Michalczewski, R.; Wieczorek, A. The effect of WC/C coating on the wear of bevel gears used in coal mines. Mater. Sci. (Medžiagotyra) 2015, 21, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, A.N. The effect of construction changes of the teeth of a gear transmission on acoustic properties. Int. J. Occup. Saf. 2012, 18, 499–507. [Google Scholar] [CrossRef] [Green Version]
- ISO 6336-1:2019; Calculation of Load Capacity of Spur and Helical Gears—Part 1: Basic Principles, Introduction and General Influence Factors. iTeh, Inc.: Newark, DE, USA, 2019.
- Myszka, D. Cast Iron–Based Alloys. In High-Performance Ferrous Alloys; Rana, R., Ed.; Springer Cham: Cham, Switzerland, 2020; pp. 153–210. ISBN 978-3-030-53824-8. [Google Scholar]
- Bhadeshia, H.K.D.H. Bainite in Steels; The Institute of Materials: Cambridge, UK, 2001; p. 479. [Google Scholar]
- Hayrynen, K.L.; Keough, J.R.; Pioszak, G.L. Designing with Austempered Ductile Iron. AFS Trans. 2010, 129, 1–15. [Google Scholar]
- Hayrynen, K.L.; Keough, J.R. Wear Properties of Austempered Ductile Cast Irons. AFS Trans. 2005, 187, 1–10. [Google Scholar]
- EN 1564:2012; Standard-Austempered Ductile Cast Irons. iTeh, Inc.: Newark, DE, USA, 2011.
- Nili-Ahmadabadi, M.; Shirazi, H. Austempered ductile cast iron: Bainitic transformation. In Encyclopedia of Iron, Steel and Their Alloys; CRC Press: Boca Raton, FL, USA, 2015; pp. 217–230. [Google Scholar]
- Soliman, M.; Palkowski, H.; Nofal, A. Multiphase ausformed austempered ductile iron. Arch. Metall. Mater. 2017, 62, 1493–1498. [Google Scholar] [CrossRef] [Green Version]
- Zum Gahr, K.H. Microstructure and Wear of Materials; Tribology series; Elsevier: Amsterdam, The Netherlands, 1987. [Google Scholar]
- Gảhlin, R.; Jacobson, S. The particle size effect in abrasion studied by controlled abrasive surfaces. Wear 1999, 224, 118–125. [Google Scholar] [CrossRef]
- Ahmadabadi, M.N.; Ghasemi, H.M.; Osia, M. Effects of successive austempering on the tribological behavior of ductile cast iron. Wear 1999, 231, 293–300. [Google Scholar] [CrossRef]
- Chang, L.C.; Hsui, I.C.; Chen, L.H.; Lui, T.S. Effects of heat treatment on the erosion behavior of austempered ductile irons. Wear 2006, 260, 783–793. [Google Scholar] [CrossRef]
- Myszka, D.; Cybula, L.; Wieczorek, A.N. Influence of heat treatment conditions on microstructure and mechanical properties of austempered ductile iron after dynamic deformation test. Arch. Metall. Mater. 2014, 59, 1181–1189. [Google Scholar] [CrossRef]
- Yang, J.; Putatunda, S.K. Effect of microstructure on abrasion wear behavior of austempered ductile cast iron (ADI) processed by a novel two-step austempering process. Mater. Sci. Eng. A 2005, 406, 217–228. [Google Scholar] [CrossRef]
- Yang, J.; Putatunda, S.K. Influence of a novel two-step austempering process on the strain-hardening behaviour of austempered ductile cast iron (ADI). Mater. Sci. Eng. A 2004, 382, 265–279. [Google Scholar] [CrossRef]
- Ghasemi, R.; Hassan, I.; Ghorbani, A.; Dioszegi, A. Austempered compacted graphite iron—Influence of austempering temperature and time on microstructural and mechanical properties. Mater. Sci. Eng. A 2019, 767, 138434. [Google Scholar] [CrossRef]
- Sellamuthu, P.; Samuel, D.G.; Dinakaran, D.; Premkumar, V.P.; Li, Z.; Seetharaman, S. Austempered ductile iron (ADI): Influence of austempering temperature on microstructure, mechanical and wear properties and energy consumption. Metals 2018, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, A.N. The role of operational factors in shaping of wear properties of alloyed Austempered Ductile Iron. Part I. Experimental studies abrasive wear of Austempered Ductile Iron (ADI) in the presence of loose quartz abrasive. Arch. Metall. Mater. 2014, 59, 1653–1662. [Google Scholar] [CrossRef]
- Zammit, A.; Abela, S.; Wagner, L.; Mhaede, M.; Grech, M. Tribological behavior of shot peened Cu-Ni austempered ductile iron. Wear 2013, 302, 829–836. [Google Scholar] [CrossRef]
- Zammit, A.; Bonnici, M.; Mhaede, M.; Wan, R.; Wagner, L. Shot peening of austempered ductile iron gears. Surf. Eng. 2017, 33, 679–686. [Google Scholar] [CrossRef]
- Zammit, A.; Mhaede, M.; Grech, M.; Abela, S.; Wagner, L. Influence of shot peening on the fatigue life of Cu-Ni austempered ductile iron. Mater. Sci. Eng. A 2012, 545, 78–85. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, J.; Lu, L.; Zhang, M.; Zeng, D.; Song, Q. Wear and friction behavior of austempered ductile iron as railway wheel material. Mater. Des. 2016, 89, 815–822. [Google Scholar] [CrossRef]
- Wieczorek, A.N. Influence of Shot Peening on Abrasion Wear in Real Conditions of Ni-Cu-Ausferritic Ductile Iron. Arch. Metall. Mater. 2016, 61, 1985–1990. [Google Scholar] [CrossRef]
- Colin-García, E.; Cruz-Ramírez, A.; Romero-Serrano, J.A.; Sánchez-Alvarado, R.G.; Gutiérrez-Pérez, V.H.; Reyes-Castellanos, G. Nodule count effect on microstructure and mechanical properties of hypo-eutectic adi alloyed with nickel. J. Min. Metall. Sect. B-Metall. 2021, 57, 115–124. [Google Scholar] [CrossRef]
- Putatunda, S.K.; Bingi, G.A. Influence of step-down austempering process on the fracture toughness of austempered ductile iron. J. Mater. Sci. Eng. Adv. Technol. 2005, 5, 39–70. [Google Scholar]
- Ravishankar, K.S.; Rajendra Udupa, K.; Prasad Rao, P. Development of Austempered Ductile Iron for High Tensile and Fracture toughness by Two Step Austempering Process. In Proceedings of the 68th WFC-World Foundry Congress, Chennai, India, 7–11 February 2008; pp. 35–40. [Google Scholar]
- Myszka, D.; Wieczorek, A.N. Effect of phenomena accompanying wear in dry corundum abrasive on the properties and microstructure of austempered ductile iron with different chemical composition. Arch. Metall. Mater. 2015, 60, 483–490. [Google Scholar] [CrossRef]
- Qiu, Y.; Pang, J.C.; Li, S.X.; Yang, E.N.; Fu, W.Q.; Liang, M.X.; Zhang, Z.F. Influence of thermal exposure on microstructure evolution and tensile fracture behaviors of compacted graphite iron. Mater. Sci. Eng. A 2016, 664, 75–85. [Google Scholar] [CrossRef]
- Myszka, D. Technologiczne aspekty przemiany odkształceniowej w żeliwie sferoidalnym ausferrytycznym. Pr. Nauk. Politech. Warsz. Mech. 2014, 265, 3–101. [Google Scholar]
- Wieczorek, A.N. The Role of Operational Factors in Shaping of Wear Properties of Alloyed Austempered Ductile Iron Part II. An Assessment of the Cumulative Effect of Abrasives Processes and the Dynamic Activity on the Wear Property of Ausferritic Ductile Iron. Arch. Metall. Mater. 2014, 59, 1663–1671. [Google Scholar] [CrossRef]
- Szewerda, K.; Tokarczyk, J.; Wieczorek, A. Impact of Increased Travel Speed of a Transportation Set on the Dynamic Parameters of a Mine Suspended Monorail. Energies 2021, 14, 1528. [Google Scholar] [CrossRef]
- Wieczorek, A.N. Operation-oriented studies on wear properties of surface-hardened alloy cast steels used in mining in the conditions of the combined action of dynamic forces and an abrasive material. Arch. Metall. Mater. 2017, 62, 2381–2389. [Google Scholar] [CrossRef] [Green Version]
- Bhadeshia, H.K.D.H. The first bulk nanostructured metal. Sci. Technol. Adv. Mater. 2013, 14, 014202. [Google Scholar] [CrossRef]
- Karnthaler, H.P.; Waitz, T.; Rentenberger, C.; Mingler, B. TEM of nanostructured metals and alloys. Mater. Sci. Eng. A 2004, 387–389, 777–782. [Google Scholar] [CrossRef]
- Caballero, F.G.; Bhadeshia, H.K.D.H. Very Strong Bainite. Curr. Opinoin Solid State Mater. Sci. 2004, 8, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, B.I.V. Nanostructured Materials from Severe Plastic Deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Morrison, W.B. The effect of grain size on the stress-strain relationship in low-carbon steel. ASM Trans. 1966, 59, 824–846. [Google Scholar]
- Sevillano, J.G.; Aldazabal, J. Ductilization of nanocrystalline materials for structural applications. Scr. Mater. 2004, 51, 795–800. [Google Scholar] [CrossRef]
- Nieman, G.W.; Weertman, J.R.; Siegel, R.W. Mechanical Behavior of Nanosrystalline Metals. Scr. Metall. Mater. 1990, 24, 145. [Google Scholar] [CrossRef]
- Rementeria, R.; Aranda, M.M.; Garcia-Mateo, C.; Caballero, F.G. Improving wear resistance of steels through nanocrystalline structures obtained by bainitic transformation. Mater. Sci. Technol. 2016, 32, 3. [Google Scholar] [CrossRef]
- Azevedo, C.R.F.; Garboggini, A.A.; Tschipitschin, A.P. Effect of austenite grain refinement on morphology of product of bainitic reaction in austempered ductile iron. Mater. Sci. Technol. 1993, 9, 705–710. [Google Scholar] [CrossRef]
- Myszka, D.; Wasiluk, K.; Skołek, E.; Swiatnicki, W. Nanoausferritic matrix of ductile iron. Mater. Sci. Technol. 2015, 31, 829–834. [Google Scholar] [CrossRef]
- Myszka, D.; Skołek, E.; Wieczorek, A. Manufacture of toothed elements in nanoausferritic ductile iron. Arch. Metall. Mater. 2014, 59, 1227–1231. [Google Scholar] [CrossRef]
- Panneerselvam, S. Development of Nanostructured Austempered Ductile Cast Iron. Ph.D. Thesis, Wayne State University, Detroit, MI, USA, 2017; p. 1856. Available online: https://digitalcommons.wayne.edu/oa_dissertations/1856 (accessed on 20 February 2023).
- Myszka, D.; Wieczorek, A.N. An assessment of the applicability of austempered ductile iron containing Mo and Ni for mining machines parts. Arch. Metall. Mater. 2013, 58, 967–970. [Google Scholar] [CrossRef]
- Sobczak, J.J. Poradnik Odlewnika: Odlewnictwo Współczesne; T. 1: Materiały; Publishing house of the Polish Foundrymen’s Technical Association: Cracow, Poland, 2013. [Google Scholar]
Parameter | Value | |||
---|---|---|---|---|
Contact surface area S, mm2 | 785.3 | |||
Compressing stress σ, MPa | 0.031 | 0.062 | 0.094 | 0.125 |
Tests duration, min | 8 × 10 | 8 × 10 | 8 × 10 | 8 × 10 |
Sliding distance, m | 1390 | 1390 | 1390 | 1390 |
Mass of the set load, kg | 2.5 | 5.0 | 7.5 | 10.0 |
Rotational speed of the moving sample, RPM | 149.1 | |||
Average linear speed of the moving sample, m/s | 0.29 | |||
Number of test repetitions for each variant | 3 | |||
Outside diameter of the sample | Ø55h8 | |||
Inside diameter of the sample | Ø45H7 | |||
Sample width (B) | for upper lid B = 10 mm, for lower lid B = 6 mm |
Material | C | Si | Mn | Cu | Ni | Mg | Cr | Mo |
---|---|---|---|---|---|---|---|---|
ADI | 3.60 | 2.45 | 0.32 | 0.93 | 1.90 | 0.065 | 0.002 | 0.08 |
34CrNiMo-6 | 0.33 | 0.31 | 0.60 | 0.18 | 1.39 | 0.003 | 1.33 | 0.02 |
30CrMo-12 | 0.31 | 1.36 | 0.85 | 0.12 | 0.11 | 0.002 | 1.19 | 0.17 |
Sample Designation | Heat Treatment | |||
Austenitising | Austempering | |||
°C | h | °C | h | |
ADI 250_6h (austempered) * | 900 | 0.5 | 250 | 6 |
ADI 250_24h (austempered) * | 250 | 24 | ||
Sample Designation | Austenitising | Austenitising | ||
°C | °C | °C | h | |
34CrNiMo-6 (Q + T) | 860 | 2 | 600 | 3 |
34CrNiMo-6 (H) | - | - | ||
30CrMo-12 (Q + T) | 600 | 3 | ||
30CrMo-12 (H) | - | - |
Sample Designation | Hardness, HRC | Sample Designation | Hardness, HRC |
---|---|---|---|
ADI 250_6h | 37 ± 1 | 34CrNiMo-6 (Q + T) | 34 ± 1 |
ADI 250_24h | 39 ± 1 | 30CrMo-12 (H) | 54 ± 2 |
34CrNiMo-6 (H) | 56 ± 2 | 30CrMo-12 (Q + T) | 29 ± 1 |
Sample Designation | Austenite Blocks | Average Width of Austenite/Ferrite Plates |
---|---|---|
µm2 | nm | |
ADI 250_6h | 5.1 | 77/175 |
ADI 250_24h | 2.6 | 70/178 |
Cast Iron Phases | Hardness HV | Cast Iron Phases | Hardness HV |
---|---|---|---|
Unalloyed ferrite | 70–200 | Ausferrite | 280–550 |
Unalloyed austenite | 170–230 | Martensite | 500–1010 |
Alloyed austenite | 250–600 | Cementite | 840–1100 |
Unalloyed perlite | 250–320 | (Cr, Fe)7C3 | 1200–1600 |
Alloyed perlite | 300–460 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myszka, D.; Wieczorek, A.N.; Skołek, E.; Borowski, T.; Kotwica, K.; Kalita, M.; Kruk, R.; Nuckowski, P.M. Abrasive Wear Resistance of Ultrafine Ausferritic Ductile Iron Intended for the Manufacture of Gears for Mining Machinery. Materials 2023, 16, 4311. https://doi.org/10.3390/ma16124311
Myszka D, Wieczorek AN, Skołek E, Borowski T, Kotwica K, Kalita M, Kruk R, Nuckowski PM. Abrasive Wear Resistance of Ultrafine Ausferritic Ductile Iron Intended for the Manufacture of Gears for Mining Machinery. Materials. 2023; 16(12):4311. https://doi.org/10.3390/ma16124311
Chicago/Turabian StyleMyszka, Dawid, Andrzej N. Wieczorek, Emilia Skołek, Tomasz Borowski, Krzysztof Kotwica, Marek Kalita, Radosław Kruk, and Paweł M. Nuckowski. 2023. "Abrasive Wear Resistance of Ultrafine Ausferritic Ductile Iron Intended for the Manufacture of Gears for Mining Machinery" Materials 16, no. 12: 4311. https://doi.org/10.3390/ma16124311