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Featured Application: Mining Industry.

Abstract: Mining machines are strongly nonlinear systems, and their transmission vibration signals
are nonlinear mixtures of different kinds of vibration sources. In addition, vibration signals measured
by the accelerometer are contaminated by noise. As a result, it is inefficient and ineffective for the
blind source separation (BSS) algorithm to separate the critical independent sources associated with
the transmission fault vibrations. For this reason, a new method based on wavelet de-noising and
nonlinear independent component analysis (ICA) is presented in this paper to tackle the nonlinear
BSS problem with additive noise. The wavelet de-noising approach was first employed to eliminate
the influence of the additive noise in the BSS procedure. Then, the radial basis function (RBF)
neural network combined with the linear ICA was applied to the de-noised vibration signals.
Vibration sources involved with the machine faults were separated. Subsequently, wavelet package
decomposition (WPD) was used to extract distinct fault features from the source signals. Lastly, an RBF
classifier was used to recognize the fault patterns. Field data acquired from a mining machine was
used to evaluate and validate the proposed diagnostic method. The experimental analysis results
show that critical fault vibration source component can be separated by the proposed method, and the
fault detection rate is superior to the linear ICA based approaches.

Keywords: mining machines; vibration analysis; fault diagnosis; nonlinear ICA

1. Introduction

A mining machine is the most important piece of equipment for coal mining [1]. A simple failure
of the machine will cause severe safety accidents and serious economic losses. Therefore, monitoring
the health condition of mining machines is crucial to ensuring mining safety [2–5]. The vibration, noise,
temperature and pressure of mining machines can be used to detect machine faults. According to the
variation characteristics of these parameters, the fault location, type and severity can be identified.
Vibration analysis is among the most widely used methods in the fault detection of mining machines,
owing to its costless usage and easy installation [6]. Because distinct information for early fault signature
can be captured by machine vibration, vibration analysis is suitable for fault detection in the early
stages. If useful fault features can be identified from the vibration signals, the potential/undergoing
failures in the mining machines will be effectively detected to ensure safe, stable and reliable operation
of the machines [7]. However, it is always a challenging task to extract features that are useful for
indicating the state change of a machine, due to strong background noise and disturbances.
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In practice, the vibration signals acquired from mining machines are inevitably contaminated
by heavy noise. In addition, the vibration source of a faulty part may mix with the vibration of
normal machine parts, such as the vibration of a rotating shaft and meshing gears, which makes it
difficult to identify useful fault vibration characteristics [8]. Consequently, it is crucial to separate the
faulty vibration source from the sensory measurement of a mixture of various vibration sources before
performing fault diagnosis. Different approaches for separating vibration sources have been discussed
in the literature. Traditional methods attempt to arrange multiple sensors at different locations to collect
the vibration signals of a machine, and then select a relatively optimal sensor for vibration analysis.
However, such methods are limited by the subjective consciousness of experts. In order to solve this
problem, information fusion and optimization algorithms have been developed to process multi-sensor
signals. Pan et al. [9] proposed a blind separation technology to realize the fault feature extraction of
aero-engine from multi-sensor vibration signals. Chen et al. [10] used a linear blind signal separation
method to fuse the multi-sensor vibration signals of a rotating machine and extracted a useful feature
for fault detection. Yang et al. [11] also used a linear blind source separation technology to filter out the
Gaussian noise and modulation sources from multi-sensor observations to accurately recover a fault
vibration component. Linear blind separation technology has been applied to the vibration source
identification of engines and rotating machinery in countless papers [12]. Previous studies show that
linear blind signal separation based on the independent component analysis (ICA) can produce good
fault source separation performance. However, due to linear assumption of the sources, ICA based
separation algorithms, such as FastICA [13], are limited to linear systems. When the nonlinearity of the
mixed observation signals increases, ICA is not effective and, in some cases, even fails to identify the
fault vibration source [14]. Consequently, the linear methods are not appropriate for complex nonlinear
separation problems, such as in steam turbines, generators and mining machines [15]. Therefore,
nonlinear blind separation has become a hot issue in fault vibration source separation. Li et al. [16]
proposed a bounded component analysis for nonlinear source separation for a wind turbine. Fantinato
et al. [17] developed a second-order statistics separator for nonlinear mixtures. Li et al. [18] presented
a complex matrix joint diagonalization method for noncircular sources in typical nonlinear functions.
He et al. [19] employed a single channel method to separate nonlinear dynamic sources based on an
instantaneous model. Li et al. [20] introduced a separator for marine gearbox fault source extraction
based on the Chaos algorithm. However, the main limitation of nonlinear blind source separation
(BSS) methods is that their solution is not unique [15]. In view of the fact that the neural networks can
effectively identify the uncertainty of a nonlinear system, it is possible to combine the neural network
and ICA to separate the nonlinear mixtures. Pajunen et al. [21] used a self-organizing neural network
(SOM) to extract the independent components of nonlinear mixed signals. Burel et al. [22] proposed
a nonlinear blind separation model based on the probabilistic neural network (PNN). Tan et al. [14]
introduced a post-linear blind separation model by combining radial basis function (RBF) network
and ICA to eliminate the uncertainty of a nonlinear mixture. However, most of the existing nonlinear
separation models have not considered additive noise in the mixture, which is not realistic, because in
practical applications the mixture is always subject to various noise sources. For instance, the vibration
signal collected by an accelerator is inevitably mixed with additive noise due to sensor noise. If the
additive noise is neglected in the BSS processing, the separation performance may decrease. To our
best knowledge, the nonlinear BSS considering additive noise has not been found in the fault detection
of mining machines.

In order to bridge the aforementioned research gap in the fault detection of mining machines,
this paper proposes a novel wavelet-based nonlinear ICA separator for fault vibration source extraction
from mining machine vibration signals. The contribution of this work is a novel wavelet-nonlinear
ICA model with consideration of additive noise. Experimental tests were carried out to verify the
effectiveness of the proposed method. The analysis results demonstrate that the fault source can be
separated from the nonlinear mixture using the proposed method with the unwanted source removed.
Hence, the fault feature extraction efficiency is improved.
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The structure of this paper is organized as follows. Section 1 introduces the background and
surveys the literature. Section 2 presents the proposed nonlinear BSS method. Section 3 presents the
experimental results. The conclusions of this paper are drawn in Section 4.

2. The Proposed Method

The proposed method for fault diagnosis of mining machines is shown in Figure 1. Table 1
describes the detailed implementation of the method.
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Table 1. Detailed implementation of the proposed method.

Step: Implementation

1. Training: Establish a fault detection model
1.1 Measure multi-channel vibration signals of the mining machine
1.2 Separate the fault vibration source using wavelet-nonlinear ICA
1.3 Extract fault features based on wavelet package decomposition (WPD)
1.4 Train a radial basis function neural network (RBFNN) classifier using the features
2. Testing: Validate the trained model using test datasets
2.1 Extract fault features using the wavelet-nonlinear ICA and WPD preprocessing
2.2 Identify the fault patterns via the trained RBFNN

2.1. Wavelet-Nonlinear ICA Model

The vibration signal of a mining machine collected by the accelerator is generally a nonlinear
mixture of various vibration sources, such as machine base movement, gear meshing, shaft rotating
and connector vibration sources. In addition, the fault source is submerged in strong background
noise. Therefore, the fault feature extraction is significantly influenced by the noise and disturbance
components, which may make incorrect fault identification. ICA is widely applied to information
fusion of multi-channel sensor signals to extract the fault source [1]. However, the traditional ICA
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algorithm is based on the linear mixing assumption, which assumes a linear mixing processing of
different source signals [13]. Equation (1) shows the traditional ICA model:

X = AS, (1)

where, X = [x1, x2, . . . , xm]T denotes the measurements of m sensors, S = [s1, s2, . . . , sn]T denotes n
unknown sources, and A is the mixing matrix. As can be seen, the unknown source matrix S is a linear
transformation of the measurement matrix X via A. ICA aims to find the inverse matrix of A to recover
the sources by S = WX, where W is the inverse of A. However, real vibration measurements do not
satisfy the linear mixing assumption. In addition, Equation (1) does not consider the additive noise.
The following nonlinear ICA model is developed to solve these issues:

X = AS
T = f (X) + υ
Z = g(T)
Y = WZ = Wg( f (X) + υ) ≈ S

, (2)

where, υ is the additive noise, T is the observation matrix after the nonlinear mixing process, f (·) is the
nonlinear mixing function, Z is the observation matrix after nonlinear de-mixing process g(·) is the
nonlinear de-mixing function and Y is the separated source matrix. Unlike the linear ICA model in
Equation (1), the nonlinear ICA model in Equation (2) aims to find f (·),g(·), A and W. Since f (·) and A
are unknown, one cannot directly find g(·) and W. In order to obtain the approximation of f (·) and A
and their inverses, wavelet de-noising is used in this paper, and the maximum mutual information
criterion based on the radial basis function neural network (RBFNN) is used to solve the de-mixing
function and the separation matrix W. The separation process is shown in Figure 2.
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The estimation of de-mixing function and the separation matrix based on RBFNN is briefly
introduced. RBFNN consists of an input layer, a hidden layer and an output layer. The essence is to
convert the input variables from one space to another, thus achieving an infinite approximation of the
objective function. The mathematical model of RBFNN is [23]:

y(t) = BK(t, p), (3)

where y(t) is an estimated source with input observation t, B is the weight of the network output layer,
p = (µ, σ) is the hidden layer center parameters with center µ and width σ, K(t, p) is the kernel function
vector. The Gaussian function is usually adopted as the kernel function:

K(t, p) = [1, exp(−(t− µ1)
T(t− µ1)/σ2

1), . . . , exp(−(t− µl)
T(t− µl)/σ

2
l )], (4)

where l = 1, 2, . . . , L and L is the number of the Gaussian function. Assume that wavelet de-noising
can eliminate additive noise and the nonlinear mixing function is reversible, so there is always a set of
RBF parameters that make any estimated source close to the true one.
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y(t) =
_
BK( f (As),

_
p )→ s, (5)

where
_
B and

_
p are the optimized parameters by RBF. In order to get the optimal RBF parameters,

the maximum mutual information criterion is employed in the RBF optimization:
I(y) =

n∑
i=1

H(yi) −H(y)

H(y) = −E[log(py(y))]
H(yi) = −E[log(pyi(yi))]

, (6)

where, E[·] is the expectation operator, py and pyi are the probability distribution functions. By adjusting
the RBF parameters to minimize the mutual information, the source components in the mixture can be
separated. The gradient descent learning algorithm is used to update the RBF parameters to get the
optimal B, µ and σ: 

−η
∂I(y)
∂B → ∆B

−η
∂I(y)
∂µ → ∆µ

−η
∂I(y)
∂σ → ∆σ

, (7)

where, η is the network learning rate, ∆B, ∆µ and ∆σ are the adjustment increments of B, µ and σ,
respectively.

By performing wavelet de-noising and RBF learning, the additive noise and the unwanted
vibration source components can be eliminated from the mixture, and hence, the fault characteristic
information can be obtained using the wavelet-nonlinear ICA.

2.2. Fault Feaure Extraction and Identification

In this paper, wavelet packet decomposition (WPD) [24] is used to extract fault features from
the separated fault vibration source. WPD is a powerful time-frequency domain analysis tool for
studying non-stationary signals in recent years. The multi-resolution ability makes WPD able to
not only reflect the overall characteristics of a signal but also the local information. It can locate
the short-time high-frequency components in the signal and display the low-frequency components.
A brief introduction of WPD is given below.

WPD can be regarded as an extension of the progressive partitioning of a function space. It divides
the frequency band into multiple layers and adaptively selects the layers for characteristic analysis.
WPD uses the following recursive formula for signal decomposition:

W2 j(t) =
∑
k

hkW j(2t− k)

W2 j+1(t) =
∑
k

gkW j(2t− k)

, (8)

where hk is a high pass filter and gk is a low pass filter, k is the number of decomposition layers, W2 j(t)
is the decomposition via high pass filters, W2 j+1(t) is the decomposition via low pass filters and j ∈ Z.
It can be seen that a proper number of decomposition layers can produce required frequency band width
and in each frequency band the noise and useless frequency characteristics can be removed. In this
way, by reconstructing the decomposed signal in each frequency sub-band, the fault information can be
amplified. Then, various statistical features can be calculated in each frequency sub-band. In this paper,
three-layer WPD was performed and eight sub-band signals were reconstructed. Then, four statistics
including the energy, variance, skewness and kurtosis of each sub-band signal was calculated, resulting
in 32 elements in total as a feature vector.

In order to recognize the fault patterns, the RBFNN is employed as the fault classifier in this work.
The feature vector is the input of the RBFNN classifier, and the fault pattern is the output.
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3. Results

Experimental tests were carried out to evaluate the proposed method. The vibration datasets were
measured from a gearbox in a mining machine with artificial failures on the gears. Four acceleration
sensors were installed at two different locations of the transmission system (see Figure 3). Sensors were
installed on each location to measure the vibration signals in horizontal and vertical directions.
The measured datasets were obtained in the case of two faulty gears in the gear transmission system,
and the fault frequency of gear 1 was fh = 19.5 Hz and the second gear fault frequency was fl = 13.4 Hz.
Figure 4 shows the time waveforms of the vibration signals measured by the four sensors with a
spalling failure in gear 1 and a broken gear tooth in gear 2. Figure 5 depicts the time waveforms of
the signals after wavelet de-noising. Figure 6 shows the spectrum of the measured signal of sensor 3
before and after the wavelet de-noising.
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As can be seen in Figures 4–6, the original vibration signals of the mining machine were
contaminated by strong background noise, which had a great influence on the amplitude impact of
the time waveforms and the frequency distributions. After wavelet de-noising, the influence of noise
was effectively suppressed in both the time domain and frequency domain. Comparing Figure 4
with Figure 5, it is noticed that the noise energy in the original signals has been significantly reduced,
and the time interval between each two peaks in the de-noised signals is more observable than that in
the original ones. The time interval could provide useful periodical information about the mechanical
impact of the mining machine for discovering undergoing faults. In Figure 6, after wavelet de-noising
the peak locating at 19.9 Hz (≈ 19.5 Hz) can be clearly observed as the spalling fault frequency. Useless
frequency components have been filtered by wavelet processing. However, the broken tooth fault
frequency 13.4 Hz is not observed. It is worth noting that the spectral peaks and sidebands of the
fault frequencies are strong indicators for the existence of the faults [1]; however, as can be seen
from Figure 6, due to different vibration sources (such as vibrations of gears, bearings and shafts) the
characteristics of the broken tooth fault frequency is lost. Therefore, it is necessary to separate the
spalling fault and the broken tooth fault sources from the measured vibration signals to accurately
extract the fault characteristics of the two faults.
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The proposed nonlinear ICA was then applied to the de-noised sensor measurements. Figures 7–9
shows two independent component time-frequency waveforms separated by nonlinear ICA under
different operation conditions of the gearbox.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 12 
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It can be seen from Figure 7 that the separated source signals include the spalling and wear
fault frequencies fh and fl, respectively, and their harmonics. Significant energy lines appear at these
characteristic frequencies. The separation results show that different fault vibration sources of the two
gears can be extracted from the mixed observation signals.

Similar observations can be seen from Figures 8 and 9. However, when the gear fault degree
increases, in addition to energy lines at fh and fl, the separated fault sources present complex coupling
frequency components at low frequencies. The coupling frequency (fh + fl) is clearly observed in
Figure 9a. Moreover, the amplitude of the energy lines with broken gear tooth condition is much
larger than those of other gear fault types. The reason is probably due to functionally damage of the
gear pair. By comparing Figures 7–9 with Figure 6, it can be seen that the proposed nonlinear ICA
model can recover the gear fault vibration sources from the multi-vibration measurements. As a result,
the compound gear faults can be effectively identified.

In order to diagnose the gear faults, the WPD analysis was first applied to the separated sources
to calculate 32 fault features for each source. Because db10 mother wavelet was effective for vibration
analysis [25], it was used in the WPD processing. Then a RBFNN classifier was used to identify the
fault types. The RBFNN classifier consisted of 32 notes in input layer, 35 notes in hidden layer and three
notes in output layer. The values of the three output notes were set to correspond to the fault patterns;
namely, [0 0 1] of the outputs correspond to fault pattern (1) spalling + wear, [0 1 0] to fault pattern
(2) spalling + spalling, and [1 0 0] to fault pattern (3) spalling + broken gear tooth. In the process of
diagnosing the gear faults, 30 pieces of the datasets were prepared for each operation condition of the
gearbox, and there were 90 pieces in total for the three operation conditions of the mining machine.
Half of the datasets were used to train the RBFNN classifier and the other half were used for testing.

In order to study the advancement of the proposed method, the blind separation method of
linear FastICA and nonlinear ICA based on RBFNN was compared in the diagnosis process. Table 2
gives the diagnosis results of the three test pieces. Table 3 gives the overall diagnostic performance of
different methods.

Table 2. Diagnostic performance.

Condition Method RBF output Truth Result

Spalling gear #1 + worn gear #2

FastICA 0.4541 0.3375 0.8183 [0 0 1] Correct
Wavelet-FastICA 0.2145 0.1536 0.9211 [0 0 1] Correct
Nonlinear ICA 0.3125 0.3127 0.8843 [0 0 1] Correct

Wavelet-Nonlinear ICA 0.0883 0.1036 0.9765 [0 0 1] Correct

Spalling gear #1 + spalling gear #2

FastICA 0.7362 1.0053 0.4381 [0 1 0] Incorrect
Wavelet-FastICA 0.4809 1.6476 0.5147 [0 1 0] Incorrect
Nonlinear ICA 0.4809 0.5033 1.6476 [0 1 0] Incorrect

Wavelet-Nonlinear ICA 0.3842 1.1481 0.4238 [0 1 0] Correct

Spalling gear #1 + broken gear #2

FastICA 0.7862 0.1154 0.7124 [1 0 0] Incorrect
Wavelet-FastICA 1.4429 0.4154 0.4124 [1 0 0] Incorrect
Nonlinear ICA 1.3009 0.4342 0.4752 [1 0 0] Correct

Wavelet-Nonlinear ICA 1.2135 0.1399 0.3654 [1 0 0] Correct

It can be seen from Table 2 that, in general, the proposed method outperforms the other three
methods. The proposed method correctly identifies the three test pieces of different gear fault conditions
while the two FastICA based methods can only recognize one piece. It is not surprising that all the
four methods correctly identify the spalling + wear condition because of slight level of the gear faults.
However, with the increase of gear fault degree, the FastICA, Wavelet-FastICA and Nonlinear ICA fail
to recognize the gear faults. It is noticed that when wavelet de-noising is not applied, the probability
of misjudgment is high, indicating that additive noise increases the difficulty of vibration source
separation, which makes ICA separation effect unsatisfactory such that the accuracy of fault diagnosis
is low. Compared with the fault detection results of Wavelet-FastICA and Wavelet-nonlinear ICA,
the RBF output of the Wavelet-nonlinear ICA is much closer to the truth than that of Wavelet-FastICA.
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Table 3. Comparison of diagnostic performance of different diagnosis methods.

Wavelet-Nonlinear ICA Nonlinear ICA Wavelet-FastICA FastICA
Correctness Misdiagnosis Correctness Misdiagnosis Correctness Misdiagnosis Correctness Misdiagnosis

93.3% 2.7% 87.8% 4.3% 88.9% 3.7% 82.2% 6.7%

It can be seen from Table 3 that the proposed Wavelet-nonlinear ICA is able to improve the fault
detection accuracy and misdiagnosis rates. Compared with linear separation technology, the nonlinear
algorithm can improve the detection accuracy by at least 4.4%. This result further confirms that the
signal collected by the sensor is a nonlinear mixing between different vibration sources; especially for
faulty operation condition of the mining machine, the degree of nonlinearity will become stronger
than that in normal condition. As a result, the traditional linear separation model is not effective for
the nonlinear vibration mixture. Moreover, thanks to wavelet de-noising, the additive noise can be
reduced to improve the separate performance of ICA and enhance the fault detection rate.

The failure detection results in Table 2; Table 3 demonstrates that the proposed Wavelet-nonlinear
ICA model fault is better than the traditional nonlinear model in the fault diagnosis of mining machines.

4. Discussions

In the experimental analysis, the db10 mother wavelet was used in the WPD processing. In order to
compare different mother wavelets in the WPD processing, the fault detection performance was analyzed
using six different mother wavelets. Table 4 shows the comparison results. The wavelet-nonlinear
ICA was used as the source separation method in the comparison. As can be seen in Table 4, the fault
detection rates of different mother wavelets are very close. As a result, the choice of the mother wavelet
is not the key factor that influences the fault detection performance. According to the fault diagnosis
results in Table 4, one can note that the proposed wavelet-nonlinear ICA is the key factor. Because the
useful vibration source of the faulty part can be effectively extracted by the key wavelet-nonlinear ICA
method, the fault detection rate is improved.

Table 4. Comparison of different mother wavelets.

Mother Wavelet Correctness

db10 93.3%
db17 91.1%
sym5 91.1%
Sym7 93.3%
haar 88.9%

bior3.3 91.1%

5. Conclusions

The complexity and multipath effect of the mining machine vibration lead to the nonlinear mixing
of signal sources, and additive noise was introduced by the sensor when collecting the vibration
signal. Hence, useful vibration characteristics for revealing the health status of the mining machine
were completely submerged in the background noise and disturbance. In order to separate the
mining machine vibration fault signal from the nonlinear mixed signal with additive noise, this paper
proposes a novel wavelet-nonlinear ICA model to extract distinct source components of machine faults.
Through analysis of the actual vibration signal of a mining machine, the effectiveness of the proposed
diagnostic model was verified. The main conclusions are drawn as follows.

(1) Wavelet de-noising can effectively suppress additive noise in the nonlinear mixed observations
to improve the separation performance of the ICA models.

(2) In the case of hybrid gear failures, the nonlinear degree of observation has exceeded the
capacity of linear ICA. In this situation, the linear assumption of linear ICA separation cannot be
satisfied, so the fault detection accuracy is lower than that of the nonlinear ICA model.
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(3) The diagnostic model proposed in this paper is sensitive to the vibration source of the mining
machine and can accurately extract the fault vibration source. As a result, it is very suitable for feature
extraction and pattern recognition of early faults of mining machine.
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