Electrical Property Analysis of Textured Ferroelectric Polycrystalline Antimony Sulfoiodide Using Complex Impedance Spectroscopy
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Dielectric Studies
3.2. Impedance Studies
3.3. Modulus studies
3.4. ac Conductivity Studies
- Alternating arrangement of polar double chains [(SbSI)∞]2 parallel to the [001] axis above the Curie point inside a single crystallite [15];
- Atoms shifting from the mirror plane perpendicularly to the [001] direction in the paraelectric phase inside a single crystallite [16];
- Heterogeneous [Sb(S,I)]∞ chains in the crystal structure consisting of sections with different lengths and opposite polarity resulting in positively or negatively-polarized irregular nanodomains inside a single crystallite [16], which are also visible in polarized light transmission [55]. Localized electron states may be created at ferroelectric domain boundaries. Domain walls create defects in the crystal lattice, which results in the appearance of new local levels inside the energy gap and potential barriers inside the crystal. It is visible as an electrical conductivity change when electrons may localize on domain boundaries at optical transitions to and inside the band [56];
- The aforementioned inaccurately parallel alignment of crystallites in the ampule.
3.5. Relaxational Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gerzanich, E.I.; Lyakhovitskaya, V.A.; Fridkin, V.M.; Popovkin, B.A. SbSI and other ferroelectric AVBVICVII materials. In Current Topics in Materials Science; Kaladis, E., Ed.; North-Holland: Amsterdam, The Netherlands, 1982; Volume 10, pp. 55–190. [Google Scholar]
- Grekov, A.A.; Danilova, S.P.; Zaks, P.L.; Kulieva, V.V.; Rubanov, L.A.; Syrkin, L.N.; Chekhunova, N.P.; El’gard, A.M. Piezoelectric elements made from antimony sulphoiodide crystals. Akust. Zurnal. 1973, 19, 662–663. [Google Scholar]
- Hamano, K.; Nakamura, T.; Ishibashi, Y.; Ooyane, T. Piezoelectric property of SbSI single crystal. J. Phys. Soc. Jpn. 1965, 20, 1886–1887. [Google Scholar] [CrossRef]
- Belyaev, L.M.; Lyachovitskaya, V.A.; Silvestrova, I.M. Influence of chemical composition on growth, dielectric and photoelectric properties of SbSI crystals. Neorg. Mater. 1970, 6, 429–433. [Google Scholar]
- Garbarz, B.; Bak, W.; Starzyk, F. The IR properties of SbSI and SbSI:Cl ferroelectric crystal needles and µ -crystals. Ferroelectrics 2000, 239, 9–16. [Google Scholar] [CrossRef]
- Irie, K. Dielectrics properties of SbSI. Ferroelectrics 1978, 21, 395–397. [Google Scholar] [CrossRef]
- Bhalla, A.S.; Newnham, R.E.; Cross, L.E.; Dougherty, J.P.; Smith, W.A. Pyroelectricity in SbSI. Ferroelectrics 1981, 33, 3–7. [Google Scholar] [CrossRef]
- Okazaki, K.; Narushima, S. Electrical Properties of the Hot-pressed SbSI Polycrystals. J. Ceram. Assoc. Jpn. 1968, 76, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Grigas, J.; Kajokas, A.; Audzijonis, A.; Zigas, L. Peculiarities and properties of SbSI electroceramics. J. Eur. Ceram. Soc. 2001, 21, 1337–1340. [Google Scholar] [CrossRef]
- Garbarz, B. Changes of polarization in the range of phase transition for SbSJ-modified. Ferroelectrics 1995, 172, 459–463. [Google Scholar] [CrossRef]
- Arndt, R.; Niggli, A. Röntgenkristallographische Untersuchungen an Antimon-Sulfolodid. Naturwissenschaften 1964, 51, 158. [Google Scholar] [CrossRef]
- Kikuchi, A.; Oka, Y.; Sawaguchi, E. Crystal structure determination of SbSI. J. Phys. Soc. Jpn. 1967, 23, 337–354. [Google Scholar] [CrossRef]
- Oka, Y.; Kikuchi, A.; Mori, T.; Sawaguchi, E. Atomic parameters in ferroelectric SbSI. J. Phys. Soc. Jpn. 1966, 21, 405–406. [Google Scholar] [CrossRef]
- Takama, T.; Mitsui, Y.J. Type of the ferroelectric phase transition in SbSI. Phys. Soc. Jpn. 1967, 23, 331–334. [Google Scholar] [CrossRef]
- Łukaszewicz, K.; Pietraszko, A.; Stępień-Damm, J.; Kajokas, A. Crystal structure and phase transitions of the ferroelectric antimony sulfoiodide SbSI. Part II. Crystal structure of SbSI in phases I., II and III. Pol. J. Chem. 1997, 71, 1852–1857. [Google Scholar]
- Łukaszewicz, K.; Pietraszko, A.; Kucharska, M. Diffuse scattering, short range order and nanodomains in the paraelectric SbSI. Ferroelectrics 2008, 375, 170–177. [Google Scholar] [CrossRef]
- Audzijonis, A.; Sereika, R.; Zaltauskas, R. Antiferroelectric phase transition in SbSI and SbSeI crystals. Solid State Commun. 2008, 147, 88–89. [Google Scholar] [CrossRef]
- Starczewska, A.; Solecka, B.; Nowak, M.; Szperlich, P. Dielectric properties of SbSI in the temperature range of 292–475 K. Acta Phys. Pol. A 2014, 126, 1125–1127. [Google Scholar] [CrossRef]
- Toroń, B.; Szperlich, P.; Nowak, M.; Rzychoń, T. Novel piezoelectric paper based on SbSI nanowires. Cellulose 2018, 25, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Jesionek, M.; Toroń, B.; Szperlich, P.; Biniaś, W.; Biniaś, D.; Rabiej, S.; Starczewska, A.; Nowak, M.; Kępińska, M.; Dec, J. Fabrication of a new PVDF/SbSI nanowire composite for smart wearable textile. Polymer 2019, 180, 121729. [Google Scholar] [CrossRef]
- Toroń, B.; Szperlich, P.; Kozioł, M. SbSI Composites based on epoxy resin and cellulose for energy harvesting and sensors—The influence of SbSI nanowires conglomeration on piezoelectric properties. Materials 2020, 13, 902. [Google Scholar] [CrossRef] [Green Version]
- Palaniappan, L.; Gnanam, F.; Ramasamy, P. Electrical conductivity of antimony sulphoiodide. Mater. Sci. Eng. 1987, 85, L1–L3. [Google Scholar] [CrossRef]
- Kotru, S.; Surthi, S.; Pandey, R.K.; Donnelly, D. Infrared Spectroscopy of Epitaxial Antimony Sulpho Iodide Thin Films. Mater. Res. Soc. 2001, 688, 229–234. [Google Scholar] [CrossRef]
- Szperlich, P.; Toroń, B.; Nowak, M.; Jesionek, M.; Kępińska, M.; Bogdanowicz, W. Growth of large SbSI crystals. Mater. Sci. 2014, 32, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Shoji, K.; Uehara, Y. Grain Orientation of SbSI Ceramics. Jpn. J. Appl. Phys. 1991, 30, 2315–2317. [Google Scholar] [CrossRef]
- Gerzanich, E.I.; Fridkin, V.M. Segnetoelektriki Tipa A5B6C7; Nauka: Moskwa, Russia, 1982. [Google Scholar]
- Robertson, D.S. A study of the melt growth of antimony sulpho-iodide crystals. J. Appl Phys. 1969, 2, 1781–1783. [Google Scholar] [CrossRef]
- Newnham, R.E. Fifty Years of Ferroelectrics. In Proceedings of the 14th IEEE International Symposium on Applications of Ferroelectrics, ISAF-04, Montreal, QC, Canada, 23–27 August 2004; pp. 1–6. [Google Scholar]
- Belyaev, A.D.; Grachev, S.G.; Grekov, A.A.; Gromashevskii, V.L.; Machulin, V.F.; Turyanitsa, I.D.; Chekhunova, N.P. SbSI ferroelectric ceramic and its practical utilization. Poluprovodn. Tekhnika Mikroelektron. 1974, 17, 33–35. [Google Scholar]
- Spann, J.R.; Becher, P.F.; Culbertson, G.; Yon, K. Development of textured antimony sulphoiodide. J. Mater. Sci 1981, 16, 2819–2830. [Google Scholar] [CrossRef]
- Porat, Y.; Ting, R.Y. The piezoelectric and dielectric properties of SbSI(Sb2S3)x composites. Ferroelectrics 1988, 87, 155–165. [Google Scholar] [CrossRef]
- Bhalla, A.S.; Newnham, R.E.; Shrout, T.R.; Cross, L.E. Piezoelectric SbSI: Polymer composites. Ferroelectrics 1982, 41, 207–211. [Google Scholar] [CrossRef]
- Conte, G.; Rossi, M.; Spaziani, F.; Arcangeli, R. Dielectric relaxation and space charge limited transport in polycrystalline CVD diamond. Diam. Relat. Mater. 2005, 14, 570–574. [Google Scholar] [CrossRef]
- Nowak, M.; Mroczek, P.; Duka, P.; Kidawa, A.; Szperlich, P.; Grabowski, A.; Szala, J.; Moskal, G. Using of textured polycrystalline SbSI in actuators. Sensors Actuators A Phys. 2009, 150, 251–256. [Google Scholar] [CrossRef]
- Macdonald, J.R. Complex Nonlinear Least Squares Immittance, Inversion, and Simulation Fitting Programs LEVM. Available online: https://jrossmacdonald.com/levmlevmw/ (accessed on 13 May 2021).
- Farea, A.; Kumar, S.; Batoo, K.M.; Yousef, A. Alimuddin Influence of frequency, temperature and composition on electrical properties of polycrystalline Co0.5CdxFe2.5−xO4 ferrites. Physica B 2008, 403, 684–701. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, W.; Tan, O.K.; Chen, X.F. Frequency and temperature dependent impedance spectroscopy of cobalt ferrite composite thick films. J. Appl. Phys. 2010, 108, 034101. [Google Scholar] [CrossRef]
- Tiwari, B.; Choudhary, R.N.P. Frequency–temperature response of Pb (Zr0.65−xCexTi0.35) O3 ferroelectric ceramics: Structural and dielectric studies. Physica B 2009, 404, 4111–4116. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, X.; Sun, C.; Li, L. Stress induced Curie temperature shift in high-aspect ratio PbTiO3 nanotube arrays. J. Appl. Phys. 2008, 104, 124108. [Google Scholar] [CrossRef]
- Surthi, S.; Kotru, S.; Pandey, R.K. Preparation and electrical properties of ferroelectric SbSI films by pulsed laser deposition. J. Mater. Sci. Lett. 2003, 2, 591–593. [Google Scholar] [CrossRef]
- Fatuzzo, E.; Harbeke, G.; Merz, W.J.; Nitsche, R.; Roetschi, H.; Ruppel, W. Ferroelectricity in SbSI. Phys. Rev. 1962, 127, 2036–2037. [Google Scholar] [CrossRef]
- Park, J.H.; Bae, J.S.; Choi, B.C.; Jeong, J.H. Impedance spectroscopy of Bi3.25La0.5Ti3O12 ceramics above and below ferroelectric transition temperatures. J. Phys. D Appl. Phys. 2007, 40, 579–583. [Google Scholar] [CrossRef]
- Kumar, M.; Srinivas, A.; Suryanarayanan, S.V.; Bhimasankaram, T. Dielectric and impedance studies on BiFeO3–BaTiO3 solid solutions. Phys. Status Solidi A 1998, 165, 317–326. [Google Scholar] [CrossRef]
- Padmamalini, N.; Ambujam, K. Impedance and modulus spectroscopy of ZrO2–TiO2–V2O5 nanocomposite. Karbala Int. J. Mod. Sci. 2016, 2, 271–275. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, D.K.; Choudhary, R.N.P.; Rinaldi, C.; Katiyar, R.S. Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O. J. Appl. Phys. 2009, 106, 024102. [Google Scholar] [CrossRef]
- Prabakar, K.; Narayandass, S.; Mangalaraj, D. Dielectric and electric modulus properties of vacuum evaporated Cd0.8Zn0.2Te thin films. Mater. Sci. Eng. B 2003, 98, 225–231. [Google Scholar] [CrossRef]
- Barik, S.K.; Choudhary, R.N.P.; Mahapatra, P.K. Electrical properties of Na1/2Nd1/2TiO3 ceramics. J. Mater. Sci. Mater. 2008, 19, 607–614. [Google Scholar] [CrossRef]
- Upadhyay, S.; Sahu, A.K.; Kumar, D.; Parkash, O. Probing electrical conduction behavior of BaSnO3. J. Appl. Phys. 1998, 84, 828–832. [Google Scholar] [CrossRef]
- Jawad, S.A.; Abu-Surrah, A.S.; Maghrabi, M.; Khattari, Z. Electric impedance study of elastic alternating propylene–carbon monoxide copolymer (PCO-200). Physica B 2011, 406, 2565–2569. [Google Scholar] [CrossRef]
- Nobre, M.A.L.; Lanfredi, S. Grain boundary electric characterization of Zn [sub 7] Sb [sub 2] O [sub 12] semiconducting ceramic: A negative temperature coefficient thermistor. J. Appl. Phys. 2003, 93, 5576–5582. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Yu, S.; Sun, R.; Ke, S.; Huang, H.; Du, R. Electrical modulus analysis on the Ni/CCTO/PVDF system near the percolation threshold. J. Phys. D Appl. Phys. 2011, 44, 475305. [Google Scholar] [CrossRef]
- Liu, J.; Duan, C.-G.; Yin, W.-G.; Mei, W.N.; Smith, R.W.; Hardy, J.R. Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 2003, 119, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Das, P.R.; Parida, B.N.; Padhee, R.; Choudhary, R.N.P. Electrical properties of Na2Pb2R2W2Ti4V4O30 (R.=Dy,Pr) ceramics. J. Adv. Ceram. 2013, 2, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.; Varadan, V.K.; Komarneni, S.; Dube, D.C. Diffuse phase transitions, electrical conduction, and low temperature dielectric properties of sol–gel derived ferroelectric barium titanate thin films. J. Appl. Phys. 2001, 90, 1480–1488. [Google Scholar] [CrossRef]
- Toroń, B.; Nowak, M.; Kępińska, M.; Szperlich, P. Mobility of Ferroelectric Domains in Antimony Sulfoiodide. Acta Phys. Pol. A 2014, 126, 1093–1095. [Google Scholar] [CrossRef]
- Grekov, A.A.; Korchagina, N.A.; Protsenko, N.P.; Rogach, E.D.; Rodin, A.I.; Samko, S.D. Relaxation of domain structure in ferroelectric semiconductors. Ferroelectrics 1978, 18, 169–173. [Google Scholar] [CrossRef]
- Popov, S.N. 121Sb and 123Sb NQR and the heterophase structure in the SbSI ferroelectric. Phys. Solid State 1999, 41, 1175–1181. [Google Scholar] [CrossRef]
- Golik, L.L.; Artobolevskaya, E.S.; Yelinson, M.I. The effect of illumination on the parameters of SbSI crystals near the phase transition. Radiotekhnika i Elektron. 1972, 17, 1339–1342. [Google Scholar]
- Kreher, K. Ferroelectrische halbleiter. Z. Karl-Marx-Univ. Leipz. Math. Nat. Reihe 1971, 20, 287–301. [Google Scholar]
Relaxation Time | Ea for 330 K < T < 450 K | Ea for 460 K < T < 500 K |
---|---|---|
τZ | 0.277(14) eV | 1.48(13) eV |
τΜ | 0.584(52) eV | 0.414(21) eV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starczewska, A.; Toroń, B.; Szperlich, P.; Nowak, M. Electrical Property Analysis of Textured Ferroelectric Polycrystalline Antimony Sulfoiodide Using Complex Impedance Spectroscopy. Materials 2021, 14, 2579. https://doi.org/10.3390/ma14102579
Starczewska A, Toroń B, Szperlich P, Nowak M. Electrical Property Analysis of Textured Ferroelectric Polycrystalline Antimony Sulfoiodide Using Complex Impedance Spectroscopy. Materials. 2021; 14(10):2579. https://doi.org/10.3390/ma14102579
Chicago/Turabian StyleStarczewska, Anna, Bartłomiej Toroń, Piotr Szperlich, and Marian Nowak. 2021. "Electrical Property Analysis of Textured Ferroelectric Polycrystalline Antimony Sulfoiodide Using Complex Impedance Spectroscopy" Materials 14, no. 10: 2579. https://doi.org/10.3390/ma14102579