Materials 2017, 10(12), 1375; doi:10.3390/ma10121375
Surface Modification of Carbon Nanotubes with an Enhanced Antifungal Activity for the Control of Plant Fungal Pathogen
1
College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China
2
CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
*
Author to whom correspondence should be addressed.
Received: 3 November 2017 / Revised: 17 November 2017 / Accepted: 28 November 2017 / Published: 30 November 2017
Abstract
The addition of surface functional groups to multi-walled carbon nanotubes (MWCNTs) expands their application in engineering, materials, and life science. In the study, we explored the antifungal activities of MWCNTs with different surface groups against an important plant pathogenic fungi Fusarium graminearum. All of the OH-, COOH-, and NH2-modified MWCNTs showed enhanced inhibition in spore elongation and germination than the pristine MWCNTs. The length of spores decreased by almost a half from 54.5 μm to 28.3, 27.4, and 29.5 μm, after being treated with 500 μg·mL−1 MWCNTs-COOH, MWCNTs-OH, and MWCNTs-NH2 separately. Furthermore, the spore germination was remarkably inhibited by surface-modified MWCNTs, and the germination rate was only about 18.2%, three times lower than pristine MWCNTs. The possible antifungal mechanism of MWCNTs is also discussed. Given the superior antifungal activity of surface modified MWCNTs and the fact that MWCNTs can be mass-produced with facile surface modification at low cost, it is expected that this carbon nanomaterial may find important applications in plant protection. View Full-TextKeywords:
MWCNTs; surface modification; antifungal activities; plant protection
▼
Figures
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
Share & Cite This Article
MDPI and ACS Style
Wang, X.; Zhou, Z.; Chen, F. Surface Modification of Carbon Nanotubes with an Enhanced Antifungal Activity for the Control of Plant Fungal Pathogen. Materials 2017, 10, 1375.
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.
Related Articles
Article Metrics
Comments
[Return to top]
Materials
EISSN 1996-1944
Published by MDPI AG, Basel, Switzerland
RSS
E-Mail Table of Contents Alert