Next Article in Journal
State of the Art Authentication, Access Control, and Secure Integration in Smart Grid
Next Article in Special Issue
Modeling and Optimization of the Medium-Term Units Commitment of Thermal Power
Previous Article in Journal
A New Building-Integrated Wind Turbine System Utilizing the Building
Previous Article in Special Issue
Designing a Profit-Maximizing Critical Peak Pricing Scheme Considering the Payback Phenomenon
Article Menu

Export Article

Open AccessArticle
Energies 2015, 8(10), 11871-11882; doi:10.3390/en81011871

Optimal Subinterval Selection Approach for Power System Transient Stability Simulation

1
Korea Electric Power Research Institute (KEPRI), Korea Electric Power Corporation (KEPCO), 105 Munji-Ro, Yuseong-Gu, Daejeon 305-760, Korea
2
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 N. Wright St., Urbana, IL 61801, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Ying-Yi Hong
Received: 2 September 2015 / Revised: 14 October 2015 / Accepted: 16 October 2015 / Published: 21 October 2015
(This article belongs to the Special Issue Electric Power Systems Research)
View Full-Text   |   Download PDF [333 KB, uploaded 21 October 2015]   |  

Abstract

Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modal analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. The performance of the proposed method is demonstrated with the GSO 37-bus system. View Full-Text
Keywords: transient stability simulation; numerical integration; time step; multi-rate method; subinterval; computational efficiency transient stability simulation; numerical integration; time step; multi-rate method; subinterval; computational efficiency
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kim, S.; Overbye, T.J. Optimal Subinterval Selection Approach for Power System Transient Stability Simulation. Energies 2015, 8, 11871-11882.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top