Next Article in Journal
Challenges in Bioenergy Production from Sugarcane Mills in Developing Countries: A Case Study
Next Article in Special Issue
Non-Destructive Analysis of Degradation Mechanisms in Cycle-Aged Graphite/LiCoO2 Batteries
Previous Article in Journal
Improving Wind Farm Dispatchability Using Model Predictive Control for Optimal Operation of Grid-Scale Energy Storage
Previous Article in Special Issue
An Acausal Li-Ion Battery Pack Model for Automotive Applications
Article Menu

Export Article

Open AccessArticle
Energies 2014, 7(9), 5863-5873; doi:10.3390/en7095863

Determining the Limiting Current Density of Vanadium Redox Flow Batteries

1
Advanced Institute of Manufacturing with High-tech Innovation and Department of Mechanical Engineering, National Chung Cheng University, No. 168, University Rd., Minhsiung Township, 62102 Chiayi, Taiwan
2
Institute of Nuclear Energy Research, Atomic Energy Council, No. 1000 Wenhua Rd., Jiaan Village, Longtan Township, 32546 Taoyuan, Taiwan
*
Author to whom correspondence should be addressed.
Received: 2 July 2014 / Revised: 18 August 2014 / Accepted: 27 August 2014 / Published: 5 September 2014
(This article belongs to the Special Issue Electrochemical Energy Storage—Battery and Capacitor)
View Full-Text   |   Download PDF [489 KB, uploaded 17 March 2015]   |  

Abstract

All-vanadium redox flow batteries (VRFBs) are used as energy storage systems for intermittent renewable power sources. The performance of VRFBs depends on materials of key components and operating conditions, such as current density, electrolyte flow rate and electrolyte composition. Mass transfer overpotential is affected by the electrolyte flow rate and electrolyte composition, which is related to the limiting current density. In order to investigate the effect of operating conditions on mass transport overpotential, this study established a relationship between the limiting current density and operating conditions. First, electrolyte solutions with different states of charge were prepared and used for a single cell to obtain discharging polarization curves under various operating conditions. The experimental results were then analyzed and are discussed in this paper. Finally, this paper proposes a limiting current density as a function of operating conditions. The result helps predict the effect of operating condition on the cell performance in a mathematical model. View Full-Text
Keywords: all-vanadium flow battery; state of charge (SOC); limiting current density; mass transfer all-vanadium flow battery; state of charge (SOC); limiting current density; mass transfer
Figures

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Chen, J.-Y.; Hsieh, C.-L.; Hsu, N.-Y.; Chou, Y.-S.; Chen, Y.-S. Determining the Limiting Current Density of Vanadium Redox Flow Batteries. Energies 2014, 7, 5863-5873.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top