Energies 2013, 6(3), 1365-1384; doi:10.3390/en6031365

Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle

1 Graduate School of Bio-Applications and System Engineering (BASE), Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo 184-8588, Japan 2 Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580, Japan 3 Mechanical Engineering Departments, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi‑ku, Fukuoka 819-0395, Japan 4 International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
* Author to whom correspondence should be addressed.
Received: 19 December 2012; in revised form: 4 February 2013 / Accepted: 18 February 2013 / Published: 5 March 2013
PDF Full-text Download PDF Full-Text [682 KB, uploaded 5 March 2013 16:48 CET]
Abstract: The design of a four-bed three-stage adsorption cycle has been proposed to reduce the volume of the six-bed three-stage adsorption cycle. A simulation model for the proposed innovative cycle was developed to analyse the influence of cycle time on the system performance identifying the specific cooling power (SCP) and coefficient of performance (COP). A particle swarm optimization (PSO) technique was used to optimize the cycle time enabling us to maximize the SCP. PSO results showed that the optimal cycle time was decreased with heat source temperature and SCP value was proportional to heat source temperature. It was found that the proposed cycle could be driven by waste heat as low as 40 °C, along with coolant at 30 °C. Comparative study of optimized result indicated that the proposed cycle increased the performance significantly over a whole range of temperatures from 40 to 70 °C and reduced two adsorbent beds, compared to the six-bed three-stage cycle.
Keywords: adsorption cycle; cooling; four-bed; three-stage; optimization

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Rahman, A.F.M.M.; Ueda, Y.; Akisawa, A.; Miyazaki, T.; Saha, B.B. Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle. Energies 2013, 6, 1365-1384.

AMA Style

Rahman AFMM, Ueda Y, Akisawa A, Miyazaki T, Saha BB. Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle. Energies. 2013; 6(3):1365-1384.

Chicago/Turabian Style

Rahman, Abul F.M.M.; Ueda, Yuki; Akisawa, Atsushi; Miyazaki, Takahiko; Saha, Bidyut B. 2013. "Design and Performance of an Innovative Four-Bed, Three-Stage Adsorption Cycle." Energies 6, no. 3: 1365-1384.

Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert