Energies 2012, 5(12), 5340-5362; doi:10.3390/en5125340
Article

Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study

Wind Engineering and Renewable Energy Laboratory (WIRE), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ENAC-IIE-WIRE, Lausanne CH-1015, Switzerland
* Author to whom correspondence should be addressed.
Received: 10 October 2012; in revised form: 28 November 2012 / Accepted: 11 December 2012 / Published: 17 December 2012
PDF Full-text Download PDF Full-Text [1606 KB, uploaded 17 December 2012 13:40 CET]
Abstract: A numerical study of atmospheric turbulence effects on wind-turbine wakes is presented. Large-eddy simulations of neutrally-stratified atmospheric boundary layer flows through stand-alone wind turbines were performed over homogeneous flat surfaces with four different aerodynamic roughness lengths. Emphasis is placed on the structure and characteristics of turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different mean wind shears and turbulence intensity levels. The simulation results show that the different turbulence intensity levels of the incoming flow lead to considerable influence on the spatial distribution of the mean velocity deficit, turbulence intensity, and turbulent shear stress in the wake region. In particular, when the turbulence intensity level of the incoming flow is higher, the turbine-induced wake (velocity deficit) recovers faster, and the locations of the maximum turbulence intensity and turbulent stress are closer to the turbine. A detailed analysis of the turbulence kinetic energy budget in the wakes reveals also an important effect of the incoming flow turbulence level on the magnitude and spatial distribution of the shear production and transport terms.
Keywords: atmospheric turbulence; large-eddy simulation; turbulence intensity; turbulence kinetic energy; wind-turbine wakes; wind shear

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Wu, Y.-T.; Porté-Agel, F. Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study. Energies 2012, 5, 5340-5362.

AMA Style

Wu Y-T, Porté-Agel F. Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study. Energies. 2012; 5(12):5340-5362.

Chicago/Turabian Style

Wu, Yu-Ting; Porté-Agel, Fernando. 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study." Energies 5, no. 12: 5340-5362.

Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert