Energies 2012, 5(10), 4186-4208; doi:10.3390/en5104186
Article

Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model

1 Department of Energetics, Applied Thermofluidodynamics and Environmental Conditioning (DETEC), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy 2 Department of Technology (DiT), University of Naples “Parthenope” C. D. IS.C4, 80143 Naples, Italy
* Author to whom correspondence should be addressed.
Received: 30 July 2012; in revised form: 25 September 2012 / Accepted: 16 October 2012 / Published: 23 October 2012
PDF Full-text Download PDF Full-Text [417 KB, uploaded 23 October 2012 10:55 CEST]
Abstract: This paper presents a design procedure and a simulation model of a novel concentrating PVT collector. The layout of the PVT system under investigation was derived from a prototype recently presented in literature and commercially available. The prototype consisted in a parabolic trough concentrator and a linear triangular receiver. In that prototype, the bottom surfaces of the receiver are equipped with mono-crystalline silicon cells whereas the top surface is covered by an absorbing surface. The aperture area of the parabola was covered by a glass in order to improve the thermal efficiency of the system. In the modified version of the collector considered in this paper, two changes are implemented: the cover glass was eliminated and the mono-crystalline silicon cells were replaced by triple-junction cells. In order to analyze PVT performance, a detailed mathematical model was implemented. This model is based on zero-dimensional energy balances. The simulation model calculates the temperatures of the main components of the system and the main energy flows Results showed that the performance of the system is excellent even when the fluid temperature is very high (>100 °C). Conversely, both electrical and thermal efficiencies dramatically decrease when the incident beam radiation decreases.
Keywords: PVT; triple-junction; solar energy

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Calise, F.; Vanoli, L. Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model. Energies 2012, 5, 4186-4208.

AMA Style

Calise F, Vanoli L. Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model. Energies. 2012; 5(10):4186-4208.

Chicago/Turabian Style

Calise, Francesco; Vanoli, Laura. 2012. "Parabolic Trough Photovoltaic/Thermal Collectors: Design and Simulation Model." Energies 5, no. 10: 4186-4208.

Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert