Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective
Abstract
:1. Introduction
2. The Smart Distribution Network (SDN) Concept in Smart Grids
2.1. Need for SDN Planning
2.2. Literature Review
2.3. Futuristic SDN Planning: Aim and Scope of Work
- 1a.
- Long-term SDN planning: Long (several years) and medium term (one year) planning problems have been carried out over large (single and/or multi-stage) planning horizons. The classification mainly deals with a number of energy sources (DG, DER, RES, REG, storage, ESS, EV, DR, associated devices, reinforcements, etc.) selection, their sizing, and location within SDN.
- 1b.
- Off-line planning problem: Off-line (scenario/model-based) planning studies have been carried out for a specific operational scenario, since practically a planning problem is an off-line problem. Hence, scenario-concerned problems in coordination with ANM-based schemes are considered a variant of the classification above.
- 2.
- Scheduling: Medium (seasonal–year) and short-term (one–several days) planning problem studies have been carried out over a scheduled horizon (one day–a season–a year). The classification primarily deals with scheduling problem of renewable/conventional sources (energy sources assets) selection and demand forecasting within a SDN framework.
- 3.
- Real-time operational planning (RT-OP): The real-time (15 min–day) operational planning problems have been studied over a short term operational horizon. The classification primarily deals with operational planning problem of asset selection and topology alteration based on state-estimation algorithms and communication-based signals. In addition, real-time operational planning (RT-OP) has expected to be critical in complex real-time SDN operations.
- (1)
- Examination of the SG package (SGP) concept, including key enablers that aim at future SDN planning.
- (2)
- Current planning status of real world (multi-objective) optimization from a SDN’s viewpoint.
- (3)
- The challenges in SDN planning and future research directions.
3. Smart Grid Packages (SGPs) for Smart Distribution Networks (SDNs)
(1) The enabling technologies and anticipated functionalities in SGP | → | SGTF |
(2) Modern distribution (consumption) concepts (models) in SGP | → | MDC |
(3) Policies by leading countries, work maps and pilot projects for SG concepts realization | → | PWP |
(4) Real world optimization planning problems (in multi-objective planning framework) | → | RWO |
4. Enabling Technologies and Anticipated Functionalities in SGP (SGTF)
4.1. Major SG Enabling Technologies (SGET)
4.1.1. SG Components Integration (SGCI)
4.1.2. Information and Communication Technologies (ICT)
4.1.3. Advanced Distributed Automation (ADA)
4.1.4. Energy Storage Technologies (EST)
4.1.5. Power Electronics (PE)
4.1.6. Electric Vehicles (EVs)
4.1.7. Sensing, Measurement, and Monitoring Technologies (SMMT)
4.1.8. Control Technologies (CT)
4.1.9. Advanced Protection Schemes (APS)
4.1.10. Demand Side Management (DSM) and Demand Response (DR)
4.2. SG Associated Anticipated Functionalities (SGAF)
4.2.1. Efficiency (ή) and Effective Management (EM)
4.2.2. Power Quality and Stability (PQS)
4.2.3. Advanced Real Time Monitoring (ARTM)
4.2.4. Reliability (Rel.)
4.2.5. Security and Privacy (S & P)
4.2.6 New Market Models, Opportunities, and Management (NMOM)
4.2.7. Implementation of New Concepts and Paradigms (INC & P)
4.2.8. Distributed Intelligence Decision Support (DIDS) and Interoperability
4.2.9. Smooth SGCI realization (SGCIR)
4.2.10. “Freedom of Choices” (FoC) for Consumers
5. Modern Distribution Concepts (MDC) and Models
5.1. Active Radial Distribution Network (ARDN)
5.2. Loop Distribution Network (LDN)
5.3. Mesh Distribution Network (MDN)
5.4. Micro Grid (MG)
5.5. Isolated (Off-Grid) Distribution System (IDS)
5.6. Clustered/Multi-Micro Grids (CMG/MMG)
5.7. Virtual Power Plants (VPP)
5.8. Smart Homes (SH)
5.9. Smart Buildings (SB)
5.10. Smart Cities (SC)
6. Policies by Leading Countries, Work Maps & Pilot Projects (PWP) for SDN Concepts Realization
7. Real World Optimization (RWO) Planning Problems (Multi-Objective Planning)
7.1. Need for an Aggregated Planning Model for SDN
7.2. Current Status of SDN from the Perspective of Multiple-Objective Planning MOP
7.3. Investigation of MOP Formulations
7.3.1. Inner Optimization (Analytical/Numerical)
a. Analytical Methods
b. Numerical Methods
7.3.2. Outer/Main Optimization (Meta-Heuristics/Artificial Intelligence)
7.3.3. Decision-Making Methods
7.4. Analysis of Potential Methods in MOP Formulations
8. Challenges and Future Research Directions
8.1. SGTF Perspective
8.1.1. Options in SGET
SGCI: | Barriers in SG component integration due to a limitation in available infrastructure. |
ICT: | Privacy, cryptographic algorithms for cyber security (data) in AMI and re-routing designs. |
ADA: | Proposing techniques, enabling ADA, aiming at realizing interconnected SDN. |
EST: | Need for improved storage technology aiming at minimizing battery failure and cost. |
PE: | Harmonics, saturation, losses, waveform distortions and reactive power pricing in the market. |
EV: | Optimized storage operation and cost with new techniques for EV applications. |
SMMT: | Complexities due to a large number of measurement devices and fault detection methods. |
CT: | MAS application, the trade-off between centralized and decentralized control. |
APS: | Modified protection techniques to enable bi-directional power flow and ensure reliability. |
DSM: | Real-time pricing (RTP) instead of average, integration of ICT infrastructure, efficient weather/load forecasting models, interoperability (among stakeholders), scalability issues (increased consumers and requirements), new scheme and predicting consumer response. |
8.1.2. Options in SGAF
ή & EM: | New forecasting methods, cloud-based control, and efficient management strategies. |
PQS: | Modern control, ADA and PE, to house high DER penetration, aiming at PQS (V & f) issues. |
ARTM: | Huge storage memory requirements with over data and privacy issues with visualization. |
Rel.: | Evaluation of new consumption models from reliability perspective and cost of reliability. |
S & P: | Need for improved cyber security and privacy protection algorithms in SH and SB. |
NMOM: | Addressing complexity issues in new market model, devices, and management techniques. |
INC & P: | Exploring interconnected topology based MDCs with new performance indicators. |
DIDS: | Compatibility of intelligent devices, DM, and perspective aware interoperability platform. |
SGCIR: | New simulators and solvers (for various scenarios), pilot projects and support tools. |
FoC: | Proposing consumer-centered schemes for active participation (DM) in grid operations. |
8.2. MDC Perspective
8.2.1. Expansion/Modification-Based SDN Planning
- Candidate SDNs: Modification of RDN (ARDN) to LDN and/or MDN with SGTF support.
- Motivation: Maximum objective attainment (multi-objective optimization).
- Likely features: ADA, ICT, MAS (advance control) and advanced protection schemes.
8.2.2. Emerging Concepts-Based New SDN Planning
- Candidate SDNs: MG and MMG concepts mainly center on the innovations in enabling SG hardware (EST, EV, PE, etc.). The SH, SB, VPP and SC, on the other hand, depends on main innovations in automation, ICT, and control technologies, respectively.
- Motivation: Develop new specified standards, formulation of new tools and techniques.
- Likely features: Still gray research areas in MOP under SGTF from a MDC perspective. The possible research-worthy areas include power quality, stability, reliability and DER housing.
8.2.3. Futuristic SDN Planning Based on Scaling Approach
8.2.3.1. Future SDN Planning (Small Scale at the Consumer’s End)
- Candidate SDNs: SH, SB and smart neighborhood are MDC concepts on consumer (AMI) side.
- Motivation: Realization relies on ICT, cloud and new integrated forecasting techniques.
- Potential Issues: The potential issues of rebound peaks, misalignment among REGs and consumer load patterns, irregular human factors, security and privacy issues, and difficulty due to a limitation in existing infrastructure, needs to be further explored.
- Likely features: Technical, economic and environmental/social objectives-based approaches must be introduced in HEMS to enable and serve consumers towards efficient scheduling of available resources. Also, flexible home automation systems (for consumer interaction in real-time) need further consideration.
- The scale of implementation:
- ○
- Small Scale Level-SL1: The possible scale-based planning approach starts from consumer level MDC (SH and SB) at smart meter side (of consumers).
8.2.3.2. Future SDN Planning (Medium-Large Scale at the Utility End)
- Candidate SDNs: The MDCs on the utility side such as MG, LDN, MDN, MMG, VPP, and SC.
- Motivation: Medium to large scale approach incorporating all the aforementioned MDCs.
- Likely features: The possible new architectures, planning tools, together with SGTF, modern integrated planning methods and interaction among interconnected MDC concepts; serves as a worthy research area.
- The scale of Implementation:
- ○
- Medium-SL2: MG equipped with PCC, is capable of islanding and grid connection.
- ○
- Medium/Large-SL3, SL4: The MG connects with modified (upgraded) LDN/MDN, which can house several MGs, hence realizing MMG concept.
- ○
- Medium/Large-SL5: Several MG, LDN/MDN, and MMG; can cluster together in a grid connected VPP configuration, on the basis of deregulated market environment.
- ○
8.3. PWP Perspective
8.4. RWO Perspective
8.4.1. APM for SDN Planning
8.4.2. Power Flow
8.4.3. Optimized Initial Parameters Setting
8.4.4. New Methods and Tools
8.4.5. Prioritization of Objectives in DM
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ή | Efficiency |
A/D/E | Average/Difficult/Easy |
V | Voltage |
f | Frequency |
(√)/(❉)/(×) | Best/better or average/poor |
ABC | Artificial bee colony |
AC/DC | Alternating current/Direct current |
ADA | Advanced distribution automation |
ADN | Active distribution network |
AHP | Analytical hierarchal process |
AI | Artificial intelligence |
ANM | Active network management |
AMI | Advance metering infrastructure |
APDS | Advanced power distribution system |
APM | Aggregated planning model |
ARDN | Active radial distribution network |
ARTM | Advanced real time monitoring |
AεCM | Augmented ε constrained method |
BL-HMOEA | Bi-level hybrid MO evolutionary algorithm |
CCP | Chance constrained programming |
CHP | Combined heat and power plant |
CIS | Customer information system |
CMG | Clustered micro grids |
CT | Control technologies |
DCC | Distribution control centers |
DER | Distributed energy resources |
DG | Distributed generation |
DM | Decision making |
DR/DRP | Demand response/Demand response provider |
DIDS | Distributed intelligence decision support |
DSM | Demand side management |
DSO | Distribution system operator |
DSS/BSS | Distributed storage system/Battery storage system |
EM/EMS | Energy management/Energy management system |
ESS/EST | Energy storage systems/Energy storage technology |
EV | Electrical vehicle |
FCM | Fuzzy clustering mechanism |
FoC | Freedom of choices |
GAMS | General algebraic modeling system |
GIS | Global information system |
HAC | Hierarchical agglomerative clustering |
HAN | Home area network |
HDI | Human development index |
HMOGA | Hybrid multi-objective optimization genetic algorithm |
INC & P | Implementation of new concepts and paradigms |
ICSP | Immune clonal selection programming |
ICT | Information and communication technologies |
IDS | Isolated (off-grid) distribution system |
LC | Load controller |
LCEAC | Life cycle equivalent annual cost |
LCEI | Life cycle environmental impact |
LDN | Loop distribution network |
LL | Load level |
MAS | Multi-agent system (infrastructure) |
MC | Micro source controller |
MCC | Main control center |
MCDA | Multi-criteria decision analysis |
MCS | Monte Carlo Simulations |
MDC | Modern distribution concepts |
MDN | Mesh distribution network |
MG/MGCC | Micro grid/Micro grid central controller |
MH | Meta-Heuristics |
MINLP | Mixed integer nonlinear programming |
MISOCP | Mixed integer second order cone programming |
MMG | Multi-micro grids |
MONP | Multi-objective (Interactive) non-linear programming |
MO/MOO | Multi-objective/Multi-objective optimization |
MOP | Multi-objective planning |
MRGA | Matrix real-coded genetic algorithm |
MV/LV | Medium voltage/Low voltage |
NMOM | New market models, opportunities and management |
NR | Newton Raphson (power flow method) |
NRCED | Nonrenewable cumulative energy demand |
OF/OI | Objective function/Objective index |
OPF | Optimum power flow |
PCC | Point of common coupling |
PE | Power electronics |
PI | Parameters initialization (and tuning) |
PQS | Power quality and stability |
PSO | Particle swarm optimization |
PV | Photovoltaic (systems) |
PWP | Policies, work maps and pilot projects |
RDN | Radial distribution network |
REG | Renewable energy generation |
Rel. | Reliability |
ROM | Reliability and operation model |
RT | Real time |
RT-OP | Real time operational planning |
RWO | Real world optimization (problem) |
RT-OP | Real-time operational planning |
S & P | Security and privacy |
SAPMS | Self-adaptive probabilistic modification strategy |
SB/SC | Smart Building/Smart City |
SDN | Smart distribution network |
SEMS | Smart energy management system |
SGCI | Smart grid components integration |
SGCIR | Smart grid components integration realization |
SGP | Smart grid package |
SGTF | Smart grid package with technologies and functionalities. |
SGAF | Smart grid anticipated functionalities |
SGET | Smart grid enabling technologies |
SH/SL | Smart home/Scale level |
SoA | Service oriented architecture |
SS | Sectionalized–switches |
SMMT | Sensing, measurement, and monitoring technologies |
SUMT | Sequential unconstrained minimization technique |
TCC | Transmission control centers |
TOPSIS | Technique for order preference by similarity to ideal solutions |
TS | Tie-switches |
VPP | Virtual power plant |
WAN | Wide area network |
WPM/WSM | Weighted product model/Weighted sum model |
(Y)/(N) | Yes/No |
References
- Farhangi, H. The path of the smart grid power energy. IEEE Mag. 2010, 8, 18–28. [Google Scholar]
- Lueken, C.; Carvalho, P.M.S.; Apt, J. Distribution grid reconfiguration reduces power losses and helps integrate renewables. Energy Policy 2012, 48, 260–273. [Google Scholar] [CrossRef]
- Sultanaa, U.; Khairuddin, A.B.; Aman, M.M.; Mokhtara, A.S.; Zareen, N. A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system. Renew. Sustain. Energy Rev. 2016, 63, 363–378. [Google Scholar] [CrossRef]
- Yun, S.Y.; Chu, C.M.; Kwon, S.C.; Song, I.K.; Choi, J.H. The Development and Empirical Evaluation of the Korean Smart Distribution Management System. Energies 2014, 7, 1332–1362. [Google Scholar] [CrossRef]
- Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. IEEE Commun. Surv. Tutor. 2012, 14, 944–980. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, C.C.; Xu, Y. Smart Distribution Systems. Energies 2016, 9, 297. [Google Scholar] [CrossRef]
- Tuballa, M.L.; Abundo, M.L. A review of the development of Smart Grid technologies. Renew. Sustain. Energy Rev. 2016, 59, 710–725. [Google Scholar] [CrossRef]
- El-Hawary, M.E. The Smart Grid—State-of-the-art and Future Trends. Electr. Power Compon. Syst. 2014, 42, 239–250. [Google Scholar] [CrossRef]
- Khator, S.K.; Leung, L.C. Power distribution planning: A review of models and issues. IEEE Trans. Power Syst. 1997, 12, 1151–1159. [Google Scholar] [CrossRef]
- Georgilakis, P.S.; Hatziargyriou, N.D. A review of Power distribution planning in the modern power systems era: Models, methods, and future research. Electr. Power Syst. Res. 2015, 121, 89–100. [Google Scholar] [CrossRef]
- Jahromi, S.N.; Rashidinejad, M.; Abdollahi, A. Multistage distribution network expansion planning under smart grids environment. Electr. Power Energy Syst. 2015, 71, 222–230. [Google Scholar] [CrossRef]
- Georgilakis, P.S.; Hatziargyriou, N.D. Optimal Distributed Generation Placement in Power Distribution Networks: Models, Methods, and Future Research. IEEE Trans. Power Syst. 2013, 28, 3420–3428. [Google Scholar] [CrossRef]
- Kim, J.C.; Cho, S.M.; Shin, H.S. Advanced Power Distribution System Configuration for Smart Grids. IEEE Trans. Smart Grid 2013, 4, 353–358. [Google Scholar] [CrossRef]
- Murty, V.V.S.N.; Kumar, A. Mesh distribution system analysis in presence of distributed generation with time varying load model. Electr. Power Energy Syst. 2014, 62, 836–854. [Google Scholar] [CrossRef]
- Gamarra, C.; Guerrero, J.M. Computational optimization techniques applied to microgrids planning: A review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. [Google Scholar] [CrossRef]
- Siddaiah, R.; Saini, R.P. A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications. Renew. Sustain. Energy Rev. 2016, 58, 376–396. [Google Scholar] [CrossRef]
- Nosratabadi, S.M.; Hooshmand, R.A.; Gholipour, E. A Comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resource scheduling in power systems. Renew. Sustain. Energy Rev. 2017, 67, 341–363. [Google Scholar] [CrossRef]
- Lobaccaro, G.; Carlucci, S.; Löfström, E. A Review of Systems and Technologies for Smart Homes and Smart Grids. Energies Rev. 2016, 9, 348. [Google Scholar] [CrossRef]
- Zhou, B.; Li, W.; Chan, K.W.; Cao, Y.; Kuang, Y.; Liu, X.; Wang, X. Smart home energy management systems: Concept, configurations, and scheduling strategies. Renew. Sustain. Energy Rev. 2016, 61, 30–40. [Google Scholar] [CrossRef]
- Calvillo, C.F.; Miralles, A.S.; Villar, J. Energy management and planning in smart cities. Renew. Sustain. Energy Rev. 2016, 55, 273–287. [Google Scholar] [CrossRef]
- International Energy Agency. Technology Road Map Smart Grids. April 2011. Available online: http://www.iea.org/publications/freepublications/publication/smartgrids_roadmap.pdf (accessed on 16 August 2016).
- Rodriguez, A.A.; Ault, G.; Galloway, S. Multi-Objective planning of distributed energy resources: A review of the state-of-the-art. Renew. Sustain. Energy Rev. 2010, 14, 1353–1366. [Google Scholar] [CrossRef]
- Keane, A.; Ochoa, L.F.; Borges, C.L.T.; Ault, G.W.; Alarcon-Rodriguez, A.D.; Currie, R.; Pilo, F.; Dent, C.; Harrison, G.P. State-of-the-art techniques and challenges ahead for distributed generation planning and optimization. IEEE Trans. Power Syst. 2013, 28, 1493–1502. [Google Scholar] [CrossRef]
- Shen, X.; Shahidehpour, M.; Han, Y.; Zhu, S.; Zheng, J. Expansion Planning of Active Distribution Networks with Centralized and Distributed Energy Storage Systems. IEEE Trans. Sustain. Energy 2017, 8, 126–134. [Google Scholar] [CrossRef]
- Konstantelos, I.; Giannelos, S.; Strbac, G. Strategic Valuation of Smart Grid Technology Options in Distribution Networks. IEEE Trans. Power Syst. 2017, 32, 1293–1303. [Google Scholar] [CrossRef]
- Kazmi, A.A.; Shahzad, M.K.; Shin, D.R. Multi-Objective Planning Techniques in Distribution Networks: A composite Review. Energies 2017, 10, 208. [Google Scholar] [CrossRef]
- Hossain, M.S.; Madlool, N.A.; Rahim, N.A.; Selvaraj, J.; Pandey, A.K.; Khan, A.F. Role of smart grid in renewable energy: An overview. Renew. Sustain. Energy Rev. 2016, 60, 1168–1184. [Google Scholar] [CrossRef]
- Viral, R.; Khatod, D.K. Optimal planning of distributed generation systems in distribution system: A review. Renew. Sustain. Energy Rev. 2012, 16, 5146–5165. [Google Scholar] [CrossRef]
- Tan, W.S.; Hassan, M.Y.; Majid, M.S.; Rahman, H.A. Optimal distributed renewable generation planning: A review of different approaches. Renew. Sustain. Energy Rev. 2013, 18, 626–645. [Google Scholar] [CrossRef]
- Strasser, T.; Andrén, F.; Kathan, J.; Cecati, C.; Buccella, C.; Siano, P.; Leitão, P.; Zhabelova, G.; Vyatkin, V.; Vrba, P.; et al. A Review of Architectures and Concepts for Intelligence in Future Electric Energy Systems. IEEE Trans. Ind. Electr. 2015, 62, 2424–2438. [Google Scholar] [CrossRef]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergut, S.; Buccella, C.; Cecati, C.; Hancke, G.P. A Survey on Smart Grid Potential Applications and Communication Requirements. IEEE Trans. Ind. Inform. 2013, 9, 28–42. [Google Scholar] [CrossRef]
- Nikos Komninos, N.; Eleni Philippou, E.; Pitsillides, A. Survey in Smart Grid and Smart Home Security: Issues, Challenges and Countermeasures. IEEE Commun. Surv. Tutor. 2014, 16, 1933–1954. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X. Simulation of the smart grid communications: challenges, techniques, and future trends. Comput. Electr. Eng. 2014, 40, 270–288. [Google Scholar] [CrossRef]
- Madani, V.; Das, R.; Aminifar, F.; McDonald, J.; Venkata, S.S.; Novosel, D.; Bose, A.; Shahidehpour, M. Distribution Automation Strategies Challenges and Opportunities in a Changing Landscape. IEEE Trans. Smart Grid 2015, 6, 2157–2165. [Google Scholar] [CrossRef]
- Das, R.; Madani, V.; Aminifar, F.; McDonald, J.; Venkata, S.S.; Novosel, D.; Bose, A.; Shahidehpour, M. Distributed Automation strategies: Evolution of Technologies and the business case. IEEE Trans. Smart Grid 2015, 6, 2166–2175. [Google Scholar] [CrossRef]
- Barsali, S.; Ceraolo, M.; Giglioli, R.; Poli, D. Storage applications for Smartgrids. Electr. Power Syst. Res. 2015, 120, 109–117. [Google Scholar] [CrossRef]
- Erdinc, O.; Paterakis, N.G.; Pappi, I.N.; Bakirtzis, A.G.; Catalao, J.P.S. A new perspective for sizing of distributed generation and energy storage for smart house holds under demand response. Appl. Energy 2015, 143, 26–37. [Google Scholar] [CrossRef]
- Sbordone, D.A.; Martirano, L.; Falvo, M.C.; Chiavaroli, L.; Pietra, B.D.; Bertini, I. Reactive power control for an energy storage system: A real implementation in a Micro-Grid. Netw. Comput. Appl. 2015, 59, 250–263. [Google Scholar] [CrossRef]
- Hemmati, R.; Saboori, H.; Saboori, S. Assessing wind uncertainty impact on short term operation scheduling of coordinated energy storage systems and thermal units. Renew. Energy 2016, 95, 74–84. [Google Scholar] [CrossRef]
- Debnath, U.K.; Ahmad, I.; Habibi, D.; Saber, A.Y. Energy storage model with gridable vehicles for economic load dispatch in smart grid. Electr. Power Energy Syst. 2015, 64, 1017–1024. [Google Scholar] [CrossRef]
- Colak, I.; Kabalci, E.; Fulli, G.; Lazarou, S. A survey on the contributions of power electronics to smart grid systems. Renew. Sustain. Energy Rev. 2015, 47, 562–579. [Google Scholar] [CrossRef]
- Jian, L.; Zheng, Y.; Xiao, X.; Chan, C.C. Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electrical vehicles to smart grid. Appl. Energy 2015, 146, 150–161. [Google Scholar] [CrossRef]
- Shaaban, M.F.; Eajal, A.A.; El-Saadany, E.F. Coordinated charging of plug-in hybrid electrical vehicles in smart hybrid AC/DC distribution systems. Renew. Energy 2015, 82, 92–99. [Google Scholar] [CrossRef]
- Liu, L.; Fong, F.; Liu, X.; Peng, Y.; Wang, Q. A review on electric vehicles interacting with renewable energy in smart grid. Renew. Sustain. Energy Rev. 2015, 51, 648–661. [Google Scholar] [CrossRef]
- Yong, J.Y.; Ramachandaramurthy, V.K.; Tan, K.M.; Mithulananthan, N. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Energy Rev. 2015, 49, 365–385. [Google Scholar] [CrossRef]
- Tan, K.M.; Ramachandaramurthy, V.K.; Yong, J.Y. Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renew. Sustain. Energy Rev. 2016, 53, 720–732. [Google Scholar] [CrossRef]
- Hare, J.; Shi, X.; Gupta, S.; Bazzi, A. Fault diagnostics in smart micro-grids: A survey. Renew. Sustain. Energy Rev. 2016, 60, 1114–1124. [Google Scholar] [CrossRef]
- Kamel, R.M.; Alsaffar, M.A.; Habib, M.K. Noval and simple scheme for Micro-Grid Protection by connecting its loads neutral points: A review on Micro-Grid Protection techniques. Renew. Sustain. Energy Rev. 2016, 58, 931–942. [Google Scholar] [CrossRef]
- Mirsaeidi, S.; Said, D.M.; Mustafa, M.W.; Habibuddin, M.H.; Ghaffari, K. Fault location and isolation in micro-grids using a digital central protection unit. Renew. Sustain. Energy Rev. 2016, 56, 1–17. [Google Scholar] [CrossRef]
- Khan, A.R.; Mahmood, A.; Safdar, A.; Khan, Z.A.; Khan, N.A. Load forecasting, dynamic pricing and DSM in smart grid: A review 2016. Renew. Sustain. Energy Rev. 2016, 54, 1311–1322. [Google Scholar] [CrossRef]
- Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand side management in smart grid using heuristic optimization. IEEE Trans. Smart Grid 2012, 3, 1244–1252. [Google Scholar] [CrossRef]
- Gelazanskas, L.; Gamage, K.A.A. Demand side management in smart grid: A review and proposals for future direction. Sustain. Cities Soc. 2014, 11, 22–30. [Google Scholar] [CrossRef]
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Evangelopoulos, V.A.; Georgilakis, P.S.; Hatziargyriou, N.D. Optimal operation of smart distribution networks: A review of models, methods and future research 2016. Electr. Power Syst. Res. 2016, 140, 95–106. [Google Scholar] [CrossRef]
- Wright, P.S.; Christensen, A.E.; Davis, P.N.; Larson, B.; Lippert, T.; Patel, P. Power Quality Propagation Measurements in Smart Grids. In Proceedings of the IEEE Conference on Precision Electromagnetic Measurements, Ottawa, ON, Canada, 10–15 July 2016; pp. 1–2. [Google Scholar]
- Wang, P.; Liang, D.H.; Yi, J.; Lyons, P.F.; Davison, P.J.; Taylor, P.C. Integrating electrical energy storage into coordinated voltage control schemes for distribution networks 2014. IEEE Trans. Smart Grid 2014, 5, 1018–1032. [Google Scholar] [CrossRef]
- Pathirikkat, G.; Reddy, M.J.B.; Mohanta, D. Stability concerns in smart grid with emerging renewable energy technologies. Electr. Power Comput. Syst. 2014, 42, 418–425. [Google Scholar]
- Hasanvand, S.; Nayeripour, M.; Waffenschmidt, E.; Abarghouei, H.F. A new approach to transform an existing distribution network into a set of micro-grids for enhancing reliability and sustainability. Appl. Soft Comput. 2017, 52, 120–134. [Google Scholar] [CrossRef]
- Depuru, S.S.S.R.; Wang, L.; Devabhaktuni, V. Smart Meters for Power Grid: Challenges, Issues, Advantages and Status. Renew. Sustain. Energy Rev. 2011, 15, 2736–2742. [Google Scholar] [CrossRef]
- Yang, Q.; Barria, J.A.; Green, T.C. Communication infrastructures for distributed control of power distribution networks. IEEE Trans. Ind. Inform. 2011, 7, 316–327. [Google Scholar] [CrossRef]
- Ting, L.; Yanan, S.; Yang, L.; Yuhong, Z.; Yucheng, D.; Wang, C.S. Abnormal traffic-indexed state estimation: A cyber–physical fusion approach for smart grid attack detection. Future Gener. Comput. Syst. 2015, 49, 94–103. [Google Scholar]
- Fan, X.; Gong, G. Security challenges in smart-grid metering and control systems. Technol. Innov. Manag. Rev. 2013, 3, 42–49. [Google Scholar]
- Yu, X.; Xue, Y. Smart Grids: A Cyber–Physical Systems Perspective. Proc. IEEE 2016, 104, 1058–1070. [Google Scholar] [CrossRef]
- Divshali, P.H.; Choi, B.J. Electrical Market Management Considering Power System Constraints in Smart Distribution Grids. Energies 2016, 9, 405. [Google Scholar] [CrossRef]
- Tafreshi, S.M.M.; Lahiji, A.S. Long-term market equilibrium in smart grid paradigm with introducing demand response provider in competition. IEEE Trans. Smart Grid 2015, 6, 2794–2806. [Google Scholar] [CrossRef]
- Safdarian, A.; Firuzabad, M.F.; Lehtonen, M. Benefits of Demand Response on Operation of Distribution Networks: A Case Study. IEEE Syst. J. 2016, 10, 189–197. [Google Scholar] [CrossRef]
- Kalambe, S.; Agnihotri, G. Loss minimization techniques used in distribution network: bibliographical survey. Renew. Sustain. Energy Rev. 2014, 29, 184–200. [Google Scholar] [CrossRef]
- Chen, T.H.; Huang, W.T.; Gu, J.C.; Pu, G.C.; Hsu, Y.F.; Guo, T.Y. Feasibility study of upgrading primary feeders from radial and open loop to normally closed-loop arrangement. IEEE Trans. Power Syst. 2004, 19, 1308–1316. [Google Scholar] [CrossRef]
- Simanjorang, R.; Miura, Y.; Ise, T. Controlling voltage profile in loop distribution system with Distributed Generation using series type BTB converter. In Proceedings of the 7th International Conference on Power Electronics, Daegu, Korea, 22–26 October 2007; pp. 1167–1172. [Google Scholar]
- Jeong, B.S.; Chun, Y.H. Feeder Loop Line Control for the Voltage Stabilization of Distribution Network with Distributed Generators. J. Electr. Eng. Technol. 2014, 9, 1–5. [Google Scholar] [CrossRef]
- Sayed, M.A.; Takeshita, T. Line Loss Minimization in Isolated Substations and Multiple Loop Distribution Systems Using the UPFC 2014. IEEE Trans. Power Electron. 2014, 29, 5813–5822. [Google Scholar] [CrossRef]
- Kazmi, S.A.A.; Shahzad, M.K.; Shin, D.R. Voltage stability index for Distribution Network connected in Loop Configuration. IETE J. Res. Taylor Francis 2017, 63, 1–13. [Google Scholar] [CrossRef]
- Kazmi, S.A.A.; Hasan, S.F.; Shin, D.R. Multi criteria decision analysis for optimum DG placement in smart grids. In Proceedings of the 2015 IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), Bangkok, Thailand, 3–6 November 2015; pp. 1–5. [Google Scholar]
- Roy, N.K.; Pota, H.R. Current Status and Issues of Concern for the Integration of Distributed Generation into Electricity Networks. IEEE Syst. J. 2015, 9, 933–944. [Google Scholar] [CrossRef]
- Herault, M.C.A.; Doye, N.N.; Gandioli, C.; Hadjsaid, N.; Tixador, P. Meshed distribution network vs. reinforcement to increase the distributed generation connection. Sustain. Energy Grids Netw. 2015, 1, 20–27. [Google Scholar] [CrossRef]
- Hadjsaid, N.; Alvarez-Hérault, M.C.; Caire, R.; Raison, B.; Descloux, J.; Bienia, W. Novel architectures and operation modes of Distribution Network to increase DG integration. In Proceedings of the 2010 IEEE Power and Energy Society General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–6. [Google Scholar]
- Sharma, S.; Abhyankar, A. Loss Allocation for Weakly Meshed Distribution System using Analytical Formulation of Shapley Value. IEEE Trans. Power Syst. 2017, 32, 1369–1377. [Google Scholar] [CrossRef]
- Akorede, M.F.; Hizam, H.; Aris, I.; Ab-Kadir, M.Z.A. Effective method for optimal allocation of distributed generation units in meshed electric power systems. IET Gener. Transm. Distrib. 2011, 5, 276–287. [Google Scholar] [CrossRef]
- Lasseter, R.H.; Paigi, P. Microgrid: A Conceptual Solution. In Proceedings of the IEEE 35th Annual Power Electronics Specialists Conference (PESC’04), Aachen, Germany, 20–25 June 2004; pp. 4285–4290. [Google Scholar]
- Guerrero, J.M.; Chandorkar, M.; Lee, T.L.; Loh, P.C. Advanced control architectures for intelligent microgrids—Part I: Decentralized and hierarchical control. IEEE Trans. Ind. Electron. 2013, 60, 1254–1262. [Google Scholar] [CrossRef]
- Guerrero, J.M.; Loh, P.C.; Lee, T.L.; Chandorkar, M. Advanced Control Architectures for Intelligent Microgrids—Part II: Power Quality, Energy Storage, and AC/DC Microgrids. IEEE Trans. Ind. Electron. 2013, 60, 1263–1270. [Google Scholar] [CrossRef]
- Che, L.; Khodayar, M.; Shahidehpour, M. Only connect: Microgrids for distribution system restoration. IEEE Power Energy Mag. 2014, 12, 70–81. [Google Scholar]
- Kazmi, S.A.A.; Hasan, S.F.; Shin, D.R. Analyzing the integration of Distributed Generation into smart grids. In Proceedings of the IEEE 10th Conference Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, 15–17 June 2015; pp. 1–5. [Google Scholar]
- IEEE Std. 1547.4. IEEE Guide for Design, Operation and Integration of Distributed Resource Island Systems with Electric Power Systems. 2011. Available online: www.seari-nc.com/iec/2012828152334.pdf (accessed on 14 August 2016).
- Che, L.; Zhang, X.; Shahidehpour, M.; Alabdulwahab, A.; Al-Turki, Y. Optimal planning of Loop-Based Microgrid Topology. IEEE Trans. Smart Grid 2016, 99, 1–11. [Google Scholar] [CrossRef]
- Chaouachi, A.; Kamel, R.M.; Andoulsi, R.; Nagasaka, K. Multiobjective Intelligent Energy Management for a Microgrid. IEEE Trans. Ind. Electron. 2013, 60, 1688–1699. [Google Scholar] [CrossRef]
- Lasseter, R.H.; Eto, J.H.; Schenkman, B.; Stevens, J.; Vollkommer, H.; Klapp, D.; Linton, E.; Hurtado, H.; Roy, J. CERTS Microgrid Laboratory Test Bed. IEEE Trans. Power Deliv. 2011, 26, 325–332. [Google Scholar] [CrossRef]
- Mandelli, S.; Barbieri, J.; Mereu, R.; Colombo, E. Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review. Renew. Sustain. Energy Rev. 2016, 58, 1621–1646. [Google Scholar] [CrossRef]
- Vasiljevska, J.; Lopes, J.A.P.; Matos, M.A. Integrated micro-generation, load and energy storage control functionality under the multi micro-grid concept. Electr. Power Syst. Res. 2013, 95, 292–301. [Google Scholar] [CrossRef]
- Asmus, P. Microgrids, virtual power plants and our distributed energy future. Electr. J. 2010, 23, 72–82. [Google Scholar] [CrossRef]
- Mancarella, P. MES (multi-energy systems): An overview of concepts and evaluation models. Energy 2014, 65, 1–17. [Google Scholar] [CrossRef]
- Peik-Herfeh, M.; Seifi, H.; Sheikh-El-Eslami, M.K. Decision making of a virtual power plant under uncertainties for bidding in a day-ahead market using point estimate method. Electr. Power Energy Syst. 2013, 44, 88–98. [Google Scholar] [CrossRef]
- Saponara, S.; Bacchillone, T. Network architecture, security issues, and hardware implementation of a home area network for smart grid. J. Comput. Netw. Commun. 2012, 2012, 5345121. [Google Scholar] [CrossRef]
- Zhang, D.; Shah, N.; Papageorgiou, L.G. Efficient energy consumption and operation management in a smart building with microgrid. Energy Convers. Manag. 2013, 74, 209–222. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Dounis, A.I.; Yang, R. Integration of plug-in hybrid electric vehicles into energy and comfort management for smart building. Energy Build. 2012, 47, 260–266. [Google Scholar] [CrossRef]
- Romero, S.R.; Santos, A.C.; Pérez, F.M.; Rey, A.L. Integration of distributed generation in the power distribution network: The need for smart grid control systems, communication and equipment for a smart city—Use cases. Renew. Sustain. Energy Rev. 2014, 38, 223–234. [Google Scholar] [CrossRef]
- European Commission. European Smart Grids technology platform, vision and strategy for Europe’s electricity. 2006. Available online: http://ec.europa.eu/research/energy/smart-grid (accessed on 14 September 2016).
- Gangale, F.; Mengolini, A.; Onyeji, I. Consumer engagement: An insight from smart grid projects in Europe. Energy Policy 2013, 60, 621–628. [Google Scholar] [CrossRef]
- IqtiyaniIlham, N.; Hasanuzzaman, M.; Hosenuzzaman, M. European smart grid prospects, policies, and challenges. Renew. Sustain. Energy Rev. 2017, 67, 776–790. [Google Scholar] [CrossRef]
- Brown, R.E. Impact of Smart Grid on Distribution System Design. Proceedigns of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–4. [Google Scholar]
- Smart Energy Reference Architecture SERA; Microsoft: Redmond, WA, USA, 2009.
- NIST Special Publication 1108 NIST Framework and Roadmap for Smart Grid Interoperability Standards; NIST: Gaithersburg, MD, USA, 2010.
- Zhao, X.; Yusheng, X.; Po, W.K. Recent advancements on smart grids in China. Electr. Power Comput. Syst. 2014, 42, 251–261. [Google Scholar]
- The Strategic Energy Plan of Japan; Summary; Ministry of Economy Trade and Industry Japan: Tokyo, Japan, 2010.
- Korean Smart Grid Institute. 2016. Available online: http://www.smartgrid.or.kr/eng.html (accessed on 16 August 2016).
- Kim, S.T.; Lim, B.I.; Park, W.K.; Kim, M.K.; Son, S.Y. An analysis on the effectiveness of a smart grid test-bed project: The Korean case. Renew. Sustain. Energy Rev. 2016, 59, 868–875. [Google Scholar] [CrossRef]
- Smart Grid Australia. Available online: http://www.smartgridsmartcity.com.au (accessed on 20 August 2016).
- Haidar, A.M.A.; Muttaqi, K.; Sutanto, D. Smart Grid and its future perspectives in Australia. Renew. Sustain. Energy Rev. 2015, 51, 1375–1389. [Google Scholar] [CrossRef]
- Selvam, M.M.; Gnanadass, R.; Padhy, N.P. Initiatives and technical challenges in smart distribution grid. Renew. Sustain. Energy Rev. 2016, 58, 911–917. [Google Scholar] [CrossRef]
- Durieux, O.; Wilde, V.D.; Lambin, J.J.; Otjacques, S.; Lefort, M. Smart Grid Technologies Feasibility Study: Increasing Decentralized Generation Power Injection Using Global Active Network Management. In Proceedings of the CIRED 21st International Conference on Electricity Distribution Frankfurt, Frankfurt, Germany, 6–9 June 2011; pp. 1–6. [Google Scholar]
- International Energy Commission (IEA). How2Guide for Smart Grids in Distribution Networks, Roadmap Development and Implementation. 2016. Available online: http://cluergal.org/media/zinnia/files/Smart_Grids_in_DistributionNetorks.pdf (accessed on 25 December 2016).
- Lawrence Berkeley National Laboratory. CERTS Microgrid Laboratory Test Bed. Available online: http://certs.lbl.gov/pdf/certs-mgtb-app-o.pdf (accessed on 29 December 2016).
- DER IREC 22@Microgrid Project (n.d.). Available online: der-microgrid.gtd.es (accessed on 26 December 2016).
- Enrich, R.; Skovron, P.; Tolos, M.; Moreno, M.T. Microgrid Management Based on Economic and Technical Criteria. In Proceedings of the IEEE International Energy Conference and Exhibition (ENERGYCON), Florence, Italy, 9–12 September 2012; pp. 551–556. [Google Scholar]
- Jayawarna, N.; Jenkins, N.; Barnes, M.; Lorentzou, M.; Papthanassiou, S.; Hatziagyriou, N. Safety Analysis of a MicroGrid. In Proceedings of the 2005 International Conference on Future Power Systems (FPS), Amsterdam, The Netherlands, 16–18 November 2005; pp. 1–7. [Google Scholar]
- Warmer, C.J.; Hommelberg, M.P.F.; Roossien, B.; Kok, J.K.; Turkstra, J.W. A field test using agents for coordination of residential micro-chip. In Proceedings of the 2007 International Conference on Intelligent Systems Applications to Power Systems, Kaohsiung, Taiwan, 5–8 November 2007; pp. 1–4. [Google Scholar]
- Gungor, V.C.; Sahin, D.; Kocak, T.; Ergüt, S.; Buccella, C.; Cecati, C.; Hancke, G.P. Smart Grid and Smart Homes: Key Players and Pilot Projects. IEEE Ind. Electron. Mag. 2012, 6, 18–34. [Google Scholar] [CrossRef]
- Kohno, M.; Masuyama, Y.; Kato, N.; Tobe, A. Hitachi’s Smart City Solutions for New Era of Urban Development.pdf. pp. 79–88. Available online: http://www.hitachi.com/rev/pdf/2011/r2011_02_101.pdf (accessed on 25 August 2016).
- Yamagata, Y.; Seya, H. Proposal for a local electricity-sharing system: A case study of Yokohama city, Japan. IET Intell. Transp. Syst. 2015, 9, 38–49. [Google Scholar] [CrossRef]
- Izadian, A.; Girrens, N.; Khayyer, P. Renewable Energy Policies, a Brief Review of the Latest U.S. and E.U. Policies. IEEE Ind. Electron. Mag. 2013, 7, 21–34. [Google Scholar] [CrossRef]
- Zakariazadeh, A.R.; Jadid, S.; Siano, P. Stochastic multi-objective operational planning of smart distribution systems considering demand response programs. Electr. Power Syst. Res. 2014, 111, 156–168. [Google Scholar] [CrossRef]
- Mena, M.; Hennebel, Y.F.; Li, C.; Ruiz, E.Z. A risk-based simulation and multi-objective optimization framework for the integration of distributed renewable generation and storage. Renew. Sustain. Energy Rev. 2014, 37, 778–793. [Google Scholar] [CrossRef]
- Kumar, D.; Samantaray, S.R. Design of an advanced electric power distribution systems using seeker optimization algorithm. Electr. Power Energy Syst. 2014, 63, 196–217. [Google Scholar] [CrossRef]
- Nick, M.; Cherkaoui, R.; Paolone, M. Optimal Allocation of Dispersed Energy Storage Systems in Active Distribution Networks for Energy Balance and Grid Support 2014. IEEE Trans. Power Syst. 2014, 29, 2300–2310. [Google Scholar]
- Kayal, P.; Chanda, C.K. A multi-objective approach to integrate solar and wind energy sources with electrical distribution network. Sol. Energy 2015, 112, 397–410. [Google Scholar]
- Kumar, D.; Samantaray, S.R. Implementation of multi-objective seeker-optimization-algorithm for optimal planning of primary distribution systems including DSTATCOM. Electr. Power Energy Syst. 2016, 77, 439–449. [Google Scholar]
- Arasteha, H.; Sepasiana, M.S.; Vahidinasab, V.; Siano, P. SoS-based multiobjective distribution system expansion planning. Electr. Power Syst. Res. 2016, 141, 392–406. [Google Scholar] [CrossRef]
- Buayai, K.; Ongsaku, W.; Mithulananthan, N. Multi-objective micro-grid planning by NSGA-II in primary distribution system. Eur. Trans. Electr. Power 2012, 22, 170–187. [Google Scholar]
- Chen, T.H.; Lin, E.H.; Yang, N.C.; Hsieh, T.Y. Multi-objective optimization for upgrading primary feeders with distributed generators from normally closed loop to mesh arrangement. Electr. Power Energy Syst. 2012, 45, 413–419. [Google Scholar] [CrossRef]
- Ganguly, S.; Sahoo, N.C.; Das, D. A novel multi-objective PSO for electrical distribution system planning incorporating distributed generation. Energy Syst. 2010, 1, 291–337. [Google Scholar] [CrossRef]
- Sanseverino, E.R.; Di Silvestre, M.L.; Ippolito, M.G.; Re, G.L. An execution, monitoring and replanning approach for optimal energy management in microgrids. Energy 2011, 36, 3429–3436. [Google Scholar]
- Moghaddam, A.A.; Seifi, A.; Niknam, T.; Pahlavani, M.R.A. Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy 2011, 36, 6490–6507. [Google Scholar] [CrossRef]
- Niknam, T.; Abarghooee, R.A.; Narimani, M.R. An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation. Appl. Energy 2012, 99, 455–470. [Google Scholar] [CrossRef]
- Motevasel, M.; Seifi, A.R.; Niknam, T. Multi-objective energy management of CHP (combined heat and power)-based micro-grid. Energy 2013, 51, 123–136. [Google Scholar] [CrossRef]
- Aghaei, J.; Alizadeh, M.I. Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems). Energy 2013, 55, 1044–1054. [Google Scholar] [CrossRef]
- Carpinelli, G.; Caramia, P.; Mottola, F.; Proto, D. Exponential weighted method and a compromise programming method for multi-objective operation of plug-in vehicle aggregators in microgrids. Electr. Power Energy Syst. 2014, 56, 374–384. [Google Scholar] [CrossRef]
- Sheng, W.; Liu, K.; Meng, X.; Ye, X.; Liu, Y. Research and practice on typical modes and optimal allocation method for PV-Wind-ES in Microgrid. Electr. Power Syst. Res. 2015, 120, 242–255. [Google Scholar] [CrossRef]
- Prommee, W.; Ongsakul, W. Multi-objective optimal placement of protective devices on microgrid using improved binary multi-objective PSO. Int. Trans. Electr. Energy Syst. 2015, 25, 2621–2638. [Google Scholar] [CrossRef]
- Shadmand, M.B.; Balog, R.S. Multi-Objective Optimization and Design of Photovoltaic-Wind Hybrid System for Community Smart DC Microgrid. IEEE Trans. Smart Grid 2014, 5, 2635–2643. [Google Scholar] [CrossRef]
- Wu, H.; Zhuang, H.; Zhang, W.; Ding, M. Optimal allocation of microgrid considering economic dispatch based on hybrid weighted bilevel planning method and algorithm improvement. Electr Power Energy Syst. 2016, 75, 28–37. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Attalage, R.A.; Perera, K.K.C.K.; Dassanayake, V.P.C. A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems. Appl. Energy 2013, 107, 412–425. [Google Scholar] [CrossRef]
- Perera, A.T.D.; Attalage, R.A.; Perera, K.K.C.K.; Dassanayake, V.P.C. Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission. Appl. Energy 2013, 107, 220–230. [Google Scholar] [CrossRef]
- Ippolito, M.G.; Silvestre, M.L.D.; Sanseverino, E.R.; Zizzo, G.; Graditi, G. Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios. Energy 2014, 64, 648–662. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Li, P.; Wang, K.; Xue, M.; Wang, C. Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Appl. Energy 2014, 113, 1656–1666. [Google Scholar] [CrossRef]
- Guo, L.; Liu, W.; Jiao, B.; Hong, B.; Wang, C. Multi-objective stochastic optimal planning method for stand-alone microgrid system. IET Gener. Transm. Distrib. 2014, 8, 1263–1273. [Google Scholar] [CrossRef]
- Lopez, R.D.; Monreal, I.R.C.; Yusta, J.M. Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation. Renew. Energy 2016, 94, 280–293. [Google Scholar] [CrossRef]
- Guo, L.; Wang, N.; Lu, H.; Li, X.; Wang, C. Multi-objective optimal planning of the stand-alone microgrid system based on different benefit subjects. Energy 2016, 116, 353–363. [Google Scholar] [CrossRef]
- Vasiljevska, J.; Pecas, J.A.; Lopes, J.A.; Matos, M.A. Evaluating the impacts of the multi microgrid concept using multicriteria decision aid. Electr. Power Syst. Res. 2012, 91, 44–51. [Google Scholar] [CrossRef]
- Zhang, L.; Gari, N.; Hmurcik, L.V. Energy management in a microgrid with distributed energy resources 2014. Energy Convers. Manag. 2014, 78, 297–305. [Google Scholar] [CrossRef]
- Arefifar, S.A.; Mohamed, Y.A.R.I.; El-Fouly, T. Optimized Multiple Microgrid-Based Clustering of Active Distribution Systems Considering Communication and Control Requirements 2015. IEEE Trans. Ind. Electron. 2015, 62, 711–723. [Google Scholar] [CrossRef]
- Belgana, A.; Rimal, B.P.; Maier, M. Open Energy Market Strategies in Microgrids: A Stackelberg Game Approach Based on a Hybrid Multiobjective Evolutionary Algorithm. IEEE Trans. Smart Grid 2015, 6, 1243–1252. [Google Scholar] [CrossRef]
- Lv, T.; Ai, Q.; Zhao, Y. A bi-level multi-objective optimal operation of grid-connected microgrids. Electr. Power Syst. Res. 2016, 131, 60–70. [Google Scholar] [CrossRef]
- Gong, J.; Xie, D.; Jiang, C.; Zhang, Y. Multiple Objective Compromised Method for Power Management in Virtual Power Plants. Energies 2011, 4, 700–716. [Google Scholar] [CrossRef]
- Yang, H.; Yi, D.; Zhao, J.; Dong, Z.Y. Distributed Optimal Dispatch of Virtual Power Plant via Limited Communication. IEEE Trans. Power Syst. 2013, 28, 3511–3512. [Google Scholar] [CrossRef]
- Papaefthymiou, S.V.; Papathanassiou, S.A. Optimum sizing of wind-pumped-storage hybrid power stations in island systems. Renew. Energy 2013, 64, 187–196. [Google Scholar] [CrossRef]
- Dietrich, K.; Latorre, J.M.; Olmos, L.; Ramos, A. Modelling and assessing the impacts of self supply and market-revenue driven Virtual Power Plants. Electr. Power Syst. Res. 2015, 119, 462–470. [Google Scholar] [CrossRef]
- Songli, F.; Qian, A.; Longjian, P. Fuzzy day-ahead scheduling of virtual power plant with optimal confidence level. IET Gener. Transm. Distrib. 2016, 10, 205–212. [Google Scholar]
- Nosratabadi, S.M.; Hooshmand, R.A.; Gholipour, E.; Parastegari, M. A new simultaneous placement of distributed generation and demand response resources to determine virtual power plant. Trans. Electr. Energy Syst. 2016, 26, 1103–1120. [Google Scholar] [CrossRef]
- Shahnia, F.; Wishart, M.T.; Ghosh, A.; Ledwich, G.; Zare, F. Smart demand side management of low-voltage distribution networks using multi-objective decision making. IET Gener. Transm. Distrib. 2012, 6, 986–1000. [Google Scholar] [CrossRef]
- Hong, Y.Y.; Lin, J.K.; Wu, C.P.; Chuang, C.C. Multi-Objective Air-Conditioning Control Considering Fuzzy Parameters Using Immune Clonal Selection Programming 2012. IEEE Trans. Smart Grid 2012, 3, 1603–1610. [Google Scholar] [CrossRef]
- Zhang, D.; Evangelisti, S.; Lettieri, P.; Papageorgiou, L.G. Economic and environmental scheduling of smart homes with microgrid: DER operation and electrical tasks. Energy Convers. Manag. 2016, 110, 113–124. [Google Scholar] [CrossRef]
- Muralitharan, K.; Sakthivel, R.; Shi, Y. Multiobjective optimization technique for demand side management with load balancing approach in smart grid. Neurocomputing 2016, 177, 110–119. [Google Scholar] [CrossRef]
- Hu, M.; Weir, J.D.; Wu, T. An augmented multi-objective particle swarm optimizer for building cluster operation decisions. Appl. Soft Comput. 2014, 25, 347–359. [Google Scholar] [CrossRef]
- Safaei, A.; Freire, F.; Antunes, C.H. A life cycle multi-objective economic and environmental assessment of distributed generation in buildings. Energy Convers. Manag. 2015, 97, 420–427. [Google Scholar] [CrossRef]
- Shaikh, P.H.; Nor, N.B.M.; Nallagownden, P.; Elamvazuthi, I.; Ibrahim, T. Intelligent multi-objective control and management for smart energy efficient buildings. Electr. Power Energy Syst. 2016, 74, 403–409. [Google Scholar] [CrossRef]
- Mahbub, M.S.; Cozzini, M.; Ostergaard, P.A.; Alberti, F. Combining multi-objective evolutionary algorithms and descriptive analytical modelling in energy scenario design. Appl. Energy 2016, 164, 140–151. [Google Scholar] [CrossRef]
- Castillo, A.; ONeill, R.P. Computational Performance of Solution Techniques Applied to the ACOPF. 2013. Available online: http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-papers/acopf-5 -computational-testing.pdf (accessed on 27 December 2016).
- Wang, J.J.; Jing, Y.Y.; Zhang, C.F.; Zhao, J.H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Kumar, K.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
Countries | Main Guidelines | Major Policy Objectives/Goals | Core Focus | |
---|---|---|---|---|
Euro-pean Union (EU) |
|
| (20%↓↓) (20%↑↑) (20%↑↑) (↑↑) (↑↑) | 4.2.1. DER controlled by Smart DSM 4.2.6. New Market Models 4.2.7. Smart infrastructure progress 4.2.8. Multiple stakeholder decision- making 4.2.10. Consumer engagement [99] Associated pilot projects |
United States (US) |
|
| (↓↓) (↑↑) (↑↑) (↑↑) (↑↑) (↑↑) (↑↑) | 4.1. Infrastructure growth (SGET) 4.2. Infrastructure modernization (with SGAF) 4.2.1. Investment in REGs 4.2.10. Active consumer participation Table 2. Associated pilot projects 5. Modernization (with MDC) |
China |
|
| (↑↑) (↑↑) (15%↑↑) (↑↑) (↑↑) | 4.1. 18 SG Technologies (SGET) 4.1. Infrastructure growth (SGET) 4.1.1. Smart Substation (SGCI) 4.2. Smart Infrastructure (SGAF) 5. Strategic Planning 5. Intelligent DN [103] Associated pilot projects |
Japan |
|
| (↑↑) (70%↑↑) (↑↑) (↑↑) (↑↑) | 4.1. Infrastructure development 4.1.1. REG (PV + Wind) integration 4.1.2. Smart Metering 4.1.5. Electrical Vehicles (EV) 4.1.10. DSM 5.4. Micro Grids (MG) 5.10. Eco Model Smart Cities |
South Korea |
|
| (↑↑) (↑↑) (↓↓) (↑↑) (↑↑) (↑↑) (↑↑) (↓↓) | 4.1.1. Smart Renewable 4.2.1. Electricity Saving 4.2.6. Smart Service/Market 4.2.10. Smart Consumer 5. Smart Power Grid 5.10. Smart Transportation [106] Jeju SG Test-Bed Project |
Australia |
|
| (20%↑↑) (↓↓) (↑↑) (↑↑) (↑↑) | 4.1. Infrastructure growth (SGET) 4.1.6. SGT initiatives (SGET) 4.2. Infrastructure modernization (SGAF) 4.2.1. Incentives for SG investments 5.10. Smart City Program |
Canada |
|
| (↑↑) (↓↓) (↑↑) | 4.1. Research and development of SG technologies (SGET) 4.2. SG awareness (SGAF) [109] Associated SG Pilot Projects |
MDC (5)/SDN | Pilot Project Name/Organization/Country/Year | SGTF 4.1) SGET | Major Objectives and Focus/Motives 4.2. SGAF | OI |
---|---|---|---|---|
5/5.2. LDN [110] | Belgium east loop active network management (ANM)/Ores and Elia/Belgium/Sep 2010–Jun 2011 | 4.1.1. SGCI (DG) 4.1.3. ADA | 4.2.1. Improve load management | (↑↑) |
4.2.2. Power quality and stability | (↑↑) | |||
4.2.7. Improve switching operation | (↓↓) | |||
5/5.2. LDN, 5/5.3. MDN [111] | ESB, Smart green circuits, Networks—SG demonstration project/ESB Networks/Ireland/Jan 2010–Dec 2012 | 4.1.1. SGCI (REG) 4.1.3. ADA 4.1.8. CT (MDC) | 4.2.1. Improve asset utilization | (↑↑) |
4.2.2. Improve Power Supply (DGs) | (↑↑) | |||
4.2.(2,9). Reduce system Losses | (↓↓) | |||
4.2.(2,9). Improve system voltage | (↑↑) | |||
4.2.4. Improve Reliability (Loops) | (↑↑) | |||
4.2.7. Improve switching operation | (↓↓) | |||
5/5.4. MG [87,112] | CERTS MG Test BedDemonstration Project/American Electric Power/USA/2006 | 4.1.1. SGCI (DER) 4.1.3. ADA 4.1.8. CT (MG) 4.1.10. DR | 4.2.(2,9). MG (voltage & frequency) stability at critical operating points | (↑↑) |
4.2.(6,8). Flexibility of control modes | (↑↑) | |||
4.2.(7,9). Autonomous islanding/reconnection | (↑↑) | |||
4.2.9. DER/REG Integration in MG | (↑↑) | |||
5/5.4. MG [113,114] | DER-IREC 22@Microgrid/GTD Sistemas de Informacion SA/Spain/Jun 2009–Nov 2011 | 4.1.1. SGCI (DER) 4.1.(3,6). ADA/EV 4.1.8. CT (MG) | 4.2.6. New research platform | (↑↑) |
4.2.7. New components integration | (↑↑) | |||
4.2.9. DER and EV integration | (↑↑) | |||
5/5.4. MG [97,115] | Microgrids/ICCS National Technical University of Athens/Greece/Jan 2006–Dec 2009 | 4.1.1. SGCI (DER) 4.1.2. ICT (AMI) 4.1.3. ADA 4.1.7. SMMT 4.1.8. CT 4.1.10. DR | 4.2.3. Agent base control and monitoring | (↑↑) |
4.2.6. Test centralized and decentralized control in interconnected mode | ||||
4.2.7. Integrated DN | ||||
4.2.9. Development of DER smart module | ||||
4.2.10. Home application (consumer conduct) | (↑↑) | |||
5/5.7. VPP [98] | Fenix/Iberdrola Distribution/Spain/Oct 2005–Oct 2009 | 4.1.1. SGCI (DER) 4.1.2. ICT (AMI) 4.1.3. ADA 4.1.7. SMMT 4.1.8. CT 4.1.9. APS 4.1.10. DR/DSM | 4.2.1. Large scale VPP decentralized management | |
4.2.3. Development of communication | ||||
4.2.4. Normal/abnormal operations | ||||
4.2.6. Integration with management and market | ||||
4.2.7. Validation with field deployments | ||||
4.2.8. Development of control solution | ||||
4.2.9. DG and DER penetration (↑↑) | ||||
4.2.9. Two future scenarios for DER penetration | ||||
5/5.7. VPP [97,98] | GAD/Iberdrola Distribucion/Spain/Oct 2005–Oct 2009 | 4.1.1. SGCI (DER) 4.1.2. ICT (AMI) 4.1.3. ADA 4.1.7. SMMT 4.1.10. DR/DSM | 4.2.1. Optimize energy consumption | (↑↑) |
4.2.(1,6). Minimize associated costs | (↓↓) | |||
4.2.6. Focus on DSM Projects | ||||
4.2.8. Maintain quality standards | ||||
4.2.10. Home application (consumer conduct) | ||||
5/5.7. VPP [116] | Smart Power System—First trial/Energy research Center of the Netherlands (ECN)/Netherlands/2006–2007 | 4.1.1. SGCI (DG) 4.1.2. ICT 4.1.3. ADA 4.1.8. CT | 4.2.1. Show ability of VPP to reduce local peak load | |
4.2.1. Improve efficiency of overall system | (↑↑) | |||
5/5.7. VPP [97] | Virtual Power Plant/RWE DAG DE/Germany/2008–2010 | 4.1.1. SGCI (DG) 4.1.2. ICT 4.1.3. ADA 4.1.8. CT | 4.2.1. Show economic and technical feasibility of VPP | |
4.2.1. Show project completion within time constraint | ||||
4.2.6. Show decentralized power production with DGs like CHP (combine heat and power) plants, wind turbines and biomass. | ||||
5/5.8. SHs [19,117] | Energy@home/Indesit, Enel Distribuzione, Telecom Italia, Electrolux/Italy/Jan 2009–Dec 2011 | 4.1.2. ICT (AMI) 4.1.3. ADA 4.1.7. SMMT 4.1.10. DR/DSM | 4.2.1. Helps consumer with energy cost incentives | |
4.2.3. Informs consumer with mobile or display device | ||||
4.2.9. Development of smart appliances | ||||
4.2.10. Adjust demand patterns in favor of consumer | ||||
4.2.10. Home application for consumer behavior | ||||
5/5.9. SBs [19,97] | BeyWatch/Investigaciony Desarrollo SA/Spain, UK, Slovinia, Italy, Greece/Dec 2008–May 2011 | 4.1.2. ICT (AMI) 4.1.3. ADA 4.1.7. SMMT 4.1.10. DR/DSM | 4.2.1. Develop user-centric and energy aware solution | |
4.2.3. To monitor, control and balance the demand | ||||
4.2.6. Consumer aware energy consumption | ||||
4.2.7. Enabling intelligent control of devices | ||||
5/5.10. SCs [97,98] | Model City Manheim/MW Energie (DE)/Germany/Nov 2008–Oct 2012 | 4.1.1. SGCI (DG) 4.1.2. ICT 4.1.3. ADA 4.1.8. CT | 4.2.(1,9). Large REG penetration and decentralized electricity sources in unban DN (↑↑) | |
4.2.7. Large scale project deployment in two cities | ||||
4.2.8. Show, translate & applied to other regions | ||||
5/5.10. SCs [106] | Jeju SG Test-Bed Project/SK and KT telecom, KEPCO, LG electronics, etc. (179 Companies)/Aug2009 | 4.1.1. SGCI (REG) 4.1.2. ICT (AMI) 4.1.3. ADA 4.1.4. EST 4.1.5. PE 4.1.6. EV 4.1.7. SMMT 4.1.8. CT 4.1.9. APS (IED) 4.1.10. DR/DSM | 4.2.1. Optimization of asset utilization | (↑↑) |
4.2.1. GHG Emission Reduction | (↓↓) | |||
4.2.1. Diverse Supply Mix | (↑↑) | |||
4.2.1. Economic Growth | (↑↑) | |||
4.2.1. Social Objectives | (↑↑) | |||
4.2.1. Electricity Consumption | (↑↑) | |||
4.2.(1,9). REG Penetration | (↓↓) | |||
4.2.(1,10). Electricity saving | (↑↑) | |||
4.2.(2,5). Security and Power Quality | (↑↑) | |||
4.2.(2,9). Superior protection | (↑↑) | |||
4.2.3. Enhanced monitoring | (↑↑) | |||
4.2.(4,8). Improved control | (↑↑) | |||
4.2.6. Service, marking | (↑↑) | |||
4.2.7. Smart transportation | (↑↑) | |||
4.2.10. Smart consumer behavior | (↑↑) | |||
5/5.10. SCs [118,119] | Yokohama Smart City Project | 4.1.1. SGCI (REG) 4.1.2. ICT (AMI) 4.1.3. ADA 4.1.4. EST 4.1.6. EV | 4.2.(1,6,9). Complete energy (REG Integration) solutions | |
4.2.1. GHG emission reduction | (↓↓) | |||
4.2.2. Power system stability with REGs | (↑↑) | |||
4.2.7. Smart Transport, SH(5.8), SB (5.9) | (↓↓) | |||
5/5.10. SCs [120] | Colorado Smart City Project, Boulder, Co USA | 4.1.1. SG Tools 4.1.2. ICT (AMI) 4.1.10. DR/DSM | 4.2.1. Exploitation of SG tools in real world problem | |
4.2,(6,7). Implementation of various DSM Programs | ||||
4.2.10. Consumer Participation |
Ref. | MDC/SDN | Decision Variables | Considered Objectives/Objective Function (OF) | Major Constraints | Test SDN | Planning Type/SGTF & SGAF/Features | MO Class/MO Optimization Method/Decision Making | Year/Load Model/Load Profile/Others/ |
---|---|---|---|---|---|---|---|---|
[121] | 5/5.1. ARDN | Multiple (DG + DR + SR) Location + Type) | Minimize (↓↓):
|
| 69 bus ARDN |
|
|
|
[122] | 5/5.1. ARDN | Multiple DG (Size + Location + Type) | Minimize (↓↓):
|
| IEEE 13 bus ARDN |
|
|
|
[123] | 5/5.1. ARDN | Multiple Feeders (Size + Loc.), Automatic Reclosers (RAs) (Loc.) | Minimize (↓↓):
|
| 54 Bus ---------- 100 Bus ARDNs |
|
|
|
[124] | 5/5.1. ARDN | Multiple DG (Size + Location + Type) | Single OF with weights:
|
| IEEE 34 bus ARDN |
|
|
|
[125] | 5/5.1. ARDN | Multiple DG (Size + Location) | Single OF:
|
| 28 Bus rural ARDN |
|
|
|
[126] | 5/5.1. ARDN | Multiple Feeders (Size + Location), (RAs) (Loc.), DSTATCOM (Loc.) | Minimize (↓↓):
|
| 54 Bus ARDN |
|
|
|
[127] | 5/5.1. ARDN | M/(DG) + Reconfiguration (DSR) + DR (Number + Loc. + size + Type) | Minimize (↓↓):
|
| IEEE 33 Bus ARDN |
|
|
|
[128] | 5/5.2. LDN/5/5.4. MG | Multiple DG + MG (Type + Size + Location) | Minimize (↓↓):
|
| 33-Bus-ARDN ---------- 69-Bus-LDN |
|
|
|
[129] | 5/5.2. LDN/5/5.3. MDN | Multiple DG (Size + Location) | Minimize (↓↓):
|
| Sample DNW with 3 Feeders |
|
|
|
[85] | 5/5.2. LDN/5/5.4. MG | M/(DG + ESS) (Num. + Loc. + Size + Type) |
|
| 37 bus Test LDN |
|
|
|
[130] | 5/5.3. MDN | Multiple DG, Substations, Feeders (Type + Size + Loc.) and sectionalizing switches (Loc.) | - Stage I: 1. {Overall complete system cost (OCS) + Total operating cost (TOC)} (↓↓)
2. contingency load loss index (CLLI) (↓↓) - Stage II: 1. {(OCS + TOC); CLLI} (↓↓); 2. P-loss (↓↓); 3. DG penetration (DGPL) (↑↑) |
| 21 bus ---------- 100 bus MDN |
|
|
|
[131] | 5/5.4. MG | M/(DG + ESS) (Loc. + Size + Type) | Minimize (↓↓):
|
| LV MG (CESI) Model, Milan, Italy |
|
|
|
[132] | 5/5.4. MG | Multiple DG + Storage (Type + Size + Loc.) | Minimize (↓↓):
|
| LV Three feeder (14 bus) MG Model |
|
|
|
[133] | 5/5.4. MG | Multiple DG + Storage (Type + Size + Loc.) | Minimize (↓↓):
|
| Typical (14 bus) LV MG Models |
|
|
|
[134] | 5/5.4. MG | Multiple DG + Storage (Type + Size + Loc.) | Minimize (↓↓):
|
| 1-LV MG Model ---------- 2-MG Model |
|
|
|
[86] | 5/5.4. MG | Multiple DG + ESS (Loc. + Type) | Minimize (↓↓):
|
| LV MG Model |
|
|
|
[135] | 5/5.4. MG | Multiple DG + ESS (Loc. + Type) | Minimize (↓↓):
|
| Typical 24 bus MG |
|
|
|
[136] | 5/5.4. MG | Multiple DG + EV (Type + Size + Loc.) | Minimize objective function:
|
| MV/LV 30 bus MG Model |
|
|
|
[137] | 5/5.4. MG | Multiple DG + ESS (Type + Size + Loc.) | Minimize (↓↓):
|
| IEEE 33 bus DN ---------- Rural DN |
|
|
|
[138] | 5/5.4. MG | Multiple Protection devices (Type + Loc.) | Minimize (↓↓):
|
| 51 Node radial MG |
|
|
|
[139] | 5/5.4. MG | Multiple DG + ST (Type) | Minimize (↓↓):
|
| DC MG Design Model |
|
|
|
[140] | 5/5.4. MG | Multiple DG + ESS (Type + Size + Loc.) | OF with weights:
|
| LV MG Model |
|
|
|
[141] | 5/5.5. IMG, SA/IDS | Multiple DG + ESS (Type+ Size) | Objective function:
|
| Test SA MG System |
|
|
|
[142] | 5/5.5. IMG, SA/IDS | Multiple DG + ESS (Type+ Size) | Minimize objective function:
|
| Test SA MG designed system |
|
|
|
[143] | 5/5.5. IDS | Multiple DG + ESS (Type + Size + Loc.) | Minimize objective function:
|
| IDS MV 207 Bus DN |
|
|
|
[144] | 5/5.5. IMG, SA/IDS | Multiple DG + ESS (Type + Size) | Maximize OF:
|
| Actual SA MG Dong-fushan Island |
|
|
|
[145] | 5/5.5. IMG, SA/IDS | Multiple DG + ESS (Type + Size) | Minimize objective function:
|
| Test SA MG system |
|
|
|
[146] | 5/5.5. IDS | Multiple DG + ESS (Type + Size) |
|
| Test SA IDS system |
|
|
|
[147] | 5/5.5. IMG/IDS | Multiple DG + ESS (Number +Type + Size + Location) |
|
| Test SA IMG SAMG Model |
|
|
|
[148] | 5/5.6. MMG | Multiple DG + MG + Nodes (Location) |
|
| 15 kV urban DN with 35 MGs |
|
|
|
[149] | 5/5.6. MMG | Multiple DG + ESS (Loc. + Type) | Overall performance index:
|
| MG Model and MMG Model |
|
|
|
[150] | 5/5.6. MMG | Multiple DG + ESS + Reactive sources (RS) + Tie and sectionalizing switches (SWs) (Type + Size + Loc.) | Single objective function:
|
| IEEE PG & E 69-bus DNW ---------- IEEE 123 Bus DNW |
|
|
|
[151] | 5/5.6. MMG | Multiple leaders + Multiple Consumers |
|
| Test MMG Market Model |
|
|
|
[152] | 5/5.2. LDN/5/5.6. MMG | Multiple DG + ESS + MG (Type + Size + Loc.) | LDN: (Upper Level) OF1:
Minimize objective function 2:
|
| Upper: IEEE 33 Bus LDN/LV MG Model Lower: IEEE 123 Bus ARDN/LV MG Model |
|
|
|
[153] | 5/5.4. MG/5/5.7. VPP | Multiple Grid + DG + ESS + MG (Type + Size + Loc.) | OF1. Profit for energy control coordination center (↑↑) OF2. Line power losses (↓↓) OF3. Voltage stability index (↑↑) OF4. Ordered supplier index (fluctuation index) (↓↓) OF5. Customer order index (↑↑) |
| Test System for VPP --------- 9-Node example system |
|
|
|
[154] | 5/5.7. VPP | Multiple DER + ESS (Loc. + Type) | Maximize:
|
| Test 3 and 100 nodes VPP Model |
|
|
|
[155] | 5/5.7. VPP | Multiple DER + ESS (Loc. + Type) | Maximize:
|
| Test VPP Model |
|
|
|
[156] | 5/5.7. VPP | Multiple DER + DR + ESS (Loc. + Type) | Maximize:
|
| Test VPP Model |
|
|
|
[157] | 5/5.7. VPP | Multiple DG (Location) |
|
| 18 bus DN with VPP (Mesh) |
|
|
|
[158] | 5/5.7. VPP | Multiple DG + DR Load (DRL) (Type + Size + Loc.) | MO/criteria function:
1. Overall cost. in VPP (↓↓) Sensitivity analysis:
|
| IEEE 33 bus ARDN |
|
|
|
[159] | 5/5.8. SH | Multiple DG + EV + DR load (DRL) (Devices) (Type + Size) | Single objective function:
|
| LV Test Radial ARDN |
|
|
|
[160] | 5/5.8. SH | Multiple DR + Price Consumer | Objective function to (↓↓) minimize:
|
| Test SHs Model |
|
|
|
[161] | 5/5.4., 5/5.8., 5/5.9., SH, SB, MG | Multiple DG + DR/price + Storage (ESS) |
|
| MG + smart building of 30 homes |
|
|
|
[162] | 5/5.9. SH, SB | Multiple DSM + DR + Devices Consumer | Multi OFs to minimize:
|
| Test SG Model & includes SHs, SBs |
|
|
|
[163] | 5/5.9. SB | Multiple DG + ESS + Devices (Type + Size) | Objective function:
|
| Test SBs Model |
|
|
|
[164] | 5/5.9. SB | Multiple DG + Storage (ESS) + Devices (Type + Size) |
|
| Portuguese SBs Model |
|
|
|
[165] | 5/5.9. SB | Multiple DG + Storage (ESS) + Devices (Type + Size) | Framework with OF:
|
| Test SBs Model |
|
|
|
[166] | 5/5.10. SC | Multiple DG + Heat Storage (Types+ Size + Loc.) | Minimize :
|
| Aalborg City Den-mark |
|
|
|
Methods in MOP Formulation | Execution | Computation Efficiency (ή) | Solution | Parameter (PI) | Application |
---|---|---|---|---|---|
Sensitively Analysis (A) | Easy (E) | Efficient (less) (√) | Simple (√) | Flat/No (N) | Simple RDN |
NR LF (A), OPF Solvers (N) | Easy (E), (A) | High (×) | Better (❉) | Flat/No (N) | Interconnected DN |
ε.Const.; GOP; SQP; MILP (N) | Difficult (D) | High (×) | Better (❉) | Flat/No (N) | Linear, Complex (❉) |
MCS; OPF; CP; MINLP (N) | Difficult (D) | High (×) | Complex (√) | Flat/No (N) | Non-Linear (√) |
[GA; PSO; EA] (1), TS (MH/AI) | Easy (E) | High/Code (×) | Better (❉) | N/Y, Y, -, Y | Complex (❉), LP (√) |
Improved variants (1) (MH/AI) | Difficult (D) | High/Code (×) | Complex (√) | Yes (Y) | Complex system (√) |
HS; TLA; BB-BC; ABC (MH/AI) | Average (A) | Average (❉) | Better (❉) | -, N, Y, Y | Non-Linear (√) |
IA; SA; HBMO; BFO (MH/AI) | D, E, A, A | (×), (×), (❉), (❉) | (❉, √, ❉, ×) | N/Y, N/Y, Y, - | Complex(×, ❉, ❉, ×) |
BA; DE; SOA; GSA (MH/AI) | A, A, D, A | (❉), (❉), (×), (❉) | Better (❉) | Y, -, Y, Y | Complex system (❉) |
ANN; SFL; Hybrid (MH/AI) | Difficult (D) | High/Code (×) | Complex (√) | Y, -, Y | Complex system (√) |
WSM; AHP; FDM; TOPSIS (DM) | E, E, A, A | (√), (√), (❉), (❉) | (×, ❉, √, √) | -, -, -, - | Complex(×, ×, √, √) |
SDN Motivation | Possible Key Enablers in SG | Stakeholders | Focused (Aimed) Objectives | |
---|---|---|---|---|
5. (5.1–5.10) New distribution concepts (MDC) | 4.1.1. SGCI (DER/DG/REG); 4.1.2. ICT (AMI); 4.1.3. ADA; 4.1.4. EST/Storage (ST); 4.1.5. Power Electronics (PE); 4.1.6. EV integration; 4.1.8. CT; 4.1.9. Smart protection (APS); 4.1.10. DR/DSM; 6. Test/pilot projects. |
|
| (↓↓) (↑↑) (↑↑) (↑↑) (↑↑) (↓↓) (↓↓) |
Enabled stability and robustness | 4.1.1. SGCI (DER) integration; 4.1.2. ICT (AMI); 4.1.3. ADA; 4.1.4. EST; 4.1.5. PE (FACTS); 4.1.6. EV integration; 4.1.9. APS; 4.2.8. Interoperability; 4.2.8. New and up to date standards; 6. Test/pilot projects, test beds. |
|
| (↑↑) (↑↑) (↓↓) (↑↑) (↑↑) (↑↑) (↑↑) |
New technology adoption to meet limitations in existing systems | 4.1.1.–4.1.10. 4.2.1. Investment in Infrastructure; 4.2.1.–4.2.10. 6. Test/pilot projects, test beds. |
|
| (↑↑) (↑↑) (↑↑) (↑↑) |
Increase in % of REG in energy mix (reduce fossil fuels ↓↓) | 4.1.1.–4.1.10. Up to date technology innovations and applications, e.g., ST, EV, SGUI (REG), etc.
4.2.1. Support by carbon crediting (Kyoto protocol). |
|
| (↑↑) (↓↓) (↓↓) (↑↑) |
ICT adoption by utilities | 4.1.2. ICT support; 4.1.3. ADA; 4.1.7. Sensor Networks; 4.1.10. DSM/DR; 5/5.8. SHs; 5/5.9. SBs. |
|
| (↑↑) (↑↑) (↑↑) |
Sustainability/Environment | 4.1.1. SGCI (REG); 4.1.3. ADA; 4.1.4. EST; 4.1.5. FACTS devices; 4.1.6. EV. |
|
| (↑↑) (↓↓) (↓↓) |
Deregulated market structures | 4.2.6. New market models; 4.2.7. Market support tools, etc. |
|
| (↑↑) (↑↑) |
Regulation for low energy costs | 4.1.1.–4.1.10. Compliance with up- to-date technology innovations and applications (4.2.1–4.2.10); 4.2.1. Investment in Infrastructure; |
|
| (↑↑) (↑↑) (↑↑) (↑↑) |
New investment opportunities (profit oriented) | 4.2.6. Investment friendly policies;
4.2.10. Consumer friendly policies. |
|
| (↑↑) (↑↑) (↑↑) |
New/Multiple Infrastructure based planning In SG environment | 4.1.1. SGCI (DER) Integration; 4.1.3. ADA; 4.1.8. Enhanced controls; 4.1.9. Upgraded protection (APS); 4.1.10. DSM/DR; 5.1–5.10. Establish new and modified performance indices; and smart devices (innovations and applications); 7/7.1. New planning tools; 7/7.2. MO Decision support. |
|
| (↓↓) (↑↑) (↑↑) (↑↑) (↑↑) (↓↓) (↓↓) (↑↑) (↓↓) (↓↓) (↑↑) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazmi, S.A.A.; Shahzad, M.K.; Khan, A.Z.; Shin, D.R. Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective. Energies 2017, 10, 501. https://doi.org/10.3390/en10040501
Kazmi SAA, Shahzad MK, Khan AZ, Shin DR. Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective. Energies. 2017; 10(4):501. https://doi.org/10.3390/en10040501
Chicago/Turabian StyleKazmi, Syed Ali Abbas, Muhammad Khuram Shahzad, Akif Zia Khan, and Dong Ryeol Shin. 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective" Energies 10, no. 4: 501. https://doi.org/10.3390/en10040501
APA StyleKazmi, S. A. A., Shahzad, M. K., Khan, A. Z., & Shin, D. R. (2017). Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective. Energies, 10(4), 501. https://doi.org/10.3390/en10040501