Next Article in Journal
High Frequency Dual-Buck Full-Bridge Inverter Utilizing a Dual-Core MCU and Parallel Algorithm for Renewable Energy Applications
Previous Article in Journal
Research on Unstructured Text Data Mining and Fault Classification Based on RNN-LSTM with Malfunction Inspection Report
Article Menu
Issue 3 (March) cover image

Export Article

Open AccessArticle
Energies 2017, 10(3), 408; doi:10.3390/en10030408

A Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Grey Relational Analysis

School of Economics and Management, North China Electric Power University, Beijing 102206, China
*
Author to whom correspondence should be addressed.
Academic Editor: David Wood
Received: 3 January 2017 / Revised: 20 February 2017 / Accepted: 18 March 2017 / Published: 21 March 2017
View Full-Text   |   Download PDF [8106 KB, uploaded 23 March 2017]   |  

Abstract

As an important part of power system planning and the basis of economic operation of power systems, the main work of power load forecasting is to predict the time distribution and spatial distribution of future power loads. The accuracy of load forecasting will directly influence the reliability of the power system. In this paper, a novel short-term Empirical Mode Decomposition-Grey Relational Analysis-Modified Particle Swarm Optimization-Least Squares Support Vector Machine (EMD-GRA-MPSO-LSSVM) load forecasting model is proposed. The model uses the de-noising method combining empirical mode decomposition and grey relational analysis to process the original load series and forecasts the processed subsequences by the algorithm of modified particle swarm optimization and least square support vector machine. Then, the final forecasting results can be obtained after reconstructing the forecasting series. This paper takes the Jibei area as an example to produce an empirical analysis for load forecasting. The model input includes the hourly load one week before the forecasting day and the daily maximum temperature, daily minimum temperature, daily average temperature, relative humidity, wind force, date type of the forecasting day. The model output is the hourly load of the forecasting day. The models of BP neural network, SVM (Support vector machine), LSSVM (Least squares support vector machine), PSO-LSSVM (Particle swarm optimization-Least squares support vector machine), MPSO-LSSVM (Modified particle swarm optimization-Least squares support vector machine), EMD-MPSO-LSSVM are selected to compare with the model of EMD-GRA-MPSO-LSSVM using the same sample. The comparison results verify that the short-term load forecasting model of EMD-GRA-MPSO-LSSVM proposed in this paper is superior to other models and has strong generalization ability and robustness. It can achieve good forecasting effect with high forecasting accuracy, providing a new idea and reference for accurate short-term load forecasting. View Full-Text
Keywords: short-term load forecasting; empirical mode decomposition; grey relational analysis; modified particle swarm optimization algorithm; least square support vector machine short-term load forecasting; empirical mode decomposition; grey relational analysis; modified particle swarm optimization algorithm; least square support vector machine
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Niu, D.; Dai, S. A Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Grey Relational Analysis. Energies 2017, 10, 408.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Energies EISSN 1996-1073 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top