Potential Carcinogens in Makeup Cosmetics
Abstract
:1. Introduction
1.1. Basic Types of Makeup
1.2. Safety of Makeup Products
1.3. The Classification of Carcinogens
2. Methods
2.1. Selection of Cosmetics for the Analysis
2.2. The Literature Data Review
3. Results
4. Discussion
4.1. Potentially Carcinogenic Substances in Makeup Products
4.1.1. Ethanolamines and Their Derivatives
4.1.2. Formaldehyde and Its Donors
4.1.3. Parabens
4.1.4. Tert-Butyl Compounds
4.1.5. Ethoxylated Compounds
4.2. Potential Carcinogenic Effects of Black Carbon and Silica in Cosmetics?
4.2.1. Carbon Black
4.2.2. Silica
4.3. Contamination with Selected Heavy Metals
4.3.1. Arsenic
4.3.2. Cadmium
4.3.3. Lead
4.3.4. Mercury
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chambers, E.S.; Vukmanovic-Stejic, M. Skin Barrier Immunity and Ageing. Immunology 2020, 160, 116–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yosipovitch, G.; Misery, L.; Proksch, E.; Metz, M.; Ständer, S.; Schmelz, M. Skin Barrier Damage and Itch: Review of Mechanisms, Topical Management and Future Directions. Acta Derm. Venereol. 2019, 99, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
- Boer, M.; Duchnik, E.; Maleszka, R.; Marchlewicz, M. Structural and Biophysical Characteristics of Human Skin in Maintaining Proper Epidermal Barrier Function. Adv. Dermatol. Allergol. 2016, 33, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Magnano, G.C.; Rui, F.; Larese Filon, F. Skin Decontamination Procedures against Potential Hazards Substances Exposure. Chem. Biol. Interact. 2021, 344, 109481. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Zhong, J.; Liu, S.; Murray, M.; Gonzalez-Angulo, A.M. A New Hypothesis for the Cancer Mechanism. Cancer Metastasis Rev. 2012, 31, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Global Cancer Data: GLOBOCAN 2018 | UICC. Available online: https://www.uicc.org/news/global-cancer-data-globocan-2018 (accessed on 21 July 2022).
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer Statistics for the Year 2020: An Overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/reg/2009/1223/oj (accessed on 21 July 2022).
- Moussas, G.I.; Papadopoulou, A.G. Substance Abuse and Cancer. Psychiatriki 2017, 28, 234–241. [Google Scholar] [CrossRef]
- Chen, Q.Y.; DesMarais, T.; Costa, M. Metals and Mechanisms of Carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 537–554. [Google Scholar] [CrossRef]
- Mitsui, T. New Cosmetic Science, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 370–406. [Google Scholar]
- Jones, R. Makeup Makeovers Beauty Bible: Expert Secrets for Stunning Transformations; Fair Winds Press: Beverly, MA, USA, 2011; pp. 1–288. [Google Scholar]
- Darbre, P.D. Underarm Cosmetics Are a Cause of Breast Cancer. Eur. J. Cancer Prev. 2001, 10, 389–393. [Google Scholar] [CrossRef]
- Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006 (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/eli/reg/2008/1272/oj (accessed on 21 July 2022).
- Agents Classified by the IARC Monographs, Volumes 1–132—IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (accessed on 21 July 2022).
- COMMISSION REGULATION (EU) 2021/2204 of 13 December 2021 Amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), as Regards Carcinogenic, Mutagenic or Reproductive Toxicant (CMR) Substances. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R2204 (accessed on 14 December 2022).
- Substances Restricted under REACH—ECHA. Available online: https://echa.europa.eu/substances-restricted-under-reach (accessed on 28 December 2022).
- EU Guidance for the Overall Exposure Assessment of CMR Substances in Cosmetic Products. Available online: https://ec.europa.eu/docsroom/documents/9982/attachments/1/translations (accessed on 12 December 2022).
- Hayashi, Y. Overview of Genotoxic Carcinogens and Non-Genotoxic Carcinogens. Exp. Toxicol. Pathol. 1992, 44, 465–471. [Google Scholar] [CrossRef]
- Hartwig, A.; Arand, M.; Epe, B.; Guth, S.; Jahnke, G.; Lampen, A.; Martus, H.J.; Monien, B.; Rietjens, I.M.C.M.; Schmitz-Spanke, S.; et al. Mode of Action-Based Risk Assessment of Genotoxic Carcinogens. Arch. Toxicol. 2020, 94, 1787–1877. [Google Scholar] [CrossRef] [PubMed]
- Hernández, L.G.; van Steeg, H.; Luijten, M.; van Benthem, J. Mechanisms of Non-Genotoxic Carcinogens and Importance of a Weight of Evidence Approach. Mutat. Res. Rev. Mutat. Res. 2009, 682, 94–109. [Google Scholar] [CrossRef]
- Charter, E.; Dueckman, M.; Kurychak, A.; Martyn, B.; Nnebe, N.; Raymer, B. Heavy Metal Hazard. In The Health Risks of Hidden Heavy Metals in Face Makeup; Environmental Defense: Toronto, Canada, 2011; pp. 1–39. [Google Scholar]
- Arshad, H.; Mehmood, M.Z.; Shah, M.H.; Abbasi, A.M. Evaluation of Heavy Metals in Cosmetic Products and Their Health Risk Assessment. Saudi. Pharm. J. 2020, 28, 779–790. [Google Scholar] [CrossRef]
- Saadatzadeh, A.; Afzalan, S.; Zadehdabagh, R.; Tishezan, L.; Najafi, N.; Seyedtabib, M.; Noori, S.M.A. Determination of Heavy Metals (Lead, Cadmium, Arsenic, and Mercury) in Authorized and Unauthorized Cosmetics. Cutan. Ocul. Toxicol. 2019, 38, 207–211. [Google Scholar] [CrossRef]
- Lim, D.S.; Roh, T.H.; Kim, M.K.; Kwon, Y.C.; Choi, S.M.; Kwack, S.J.; Kim, K.B.; Yoon, S.; Kim, H.S.; Lee, B.M. Non-Cancer, Cancer, and Dermal Sensitization Risk Assessment of Heavy Metals in Cosmetics. J. Toxicol. Environ. Health A 2018, 81, 432–452. [Google Scholar] [CrossRef]
- Dreno, B.; Bensadoun, R.J.; Humbert, P.; Krutmann, J.; Luger, T.; Triller, R.; Rougier, A.; Seité, S. Algorithm for Dermocosmetic Use in the Management of Cutaneous Side-Effects Associated with Targeted Therapy in Oncology. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1071–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Toxicology Program; Public Health Service; National Institutes of Health; US Department of Health; Human Services. NTP toxicology and carcinogenesis studies of triethanolamine (Cas No. 102-71-6) in B6C3F1 mice (dermal studies). Natl. Toxicol. Program Tech. Rep. Ser. 2004, 518, 5–163. [Google Scholar]
- National Center for Biotechnology Information PubChem Compound Summary for CID 8021, Diethylamine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Diethylamine (accessed on 21 July 2022).
- Fiume, M.M.; Heldreth, B.A.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; et al. Safety Assessment of Ethanolamine and Ethanolamine Salts as Used in Cosmetics. Int. J. Toxicol. 2015, 34 (Suppl. 2), 84S–98S. [Google Scholar] [CrossRef] [PubMed]
- Hebels, D.G.A.J.; Briedé, J.J.; Khampang, R.; Kleinjans, J.C.S.; de Kok, T.M.C.M. Radical Mechanisms in Nitrosamine- and Nitrosamide-Induced Whole-Genome Gene Expression Modulations in Caco-2 Cells. Toxicol. Sci. 2010, 116, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Rager, J.E.; Smeester, L.; Jaspers, I.; Sexton, K.G.; Fry, R.C. Epigenetic Changes Induced by Air Toxics: Formaldehyde Exposure Alters MiRNA Expression Profiles in Human Lung Cells. Environ. Health Perspect. 2011, 119, 494–500. [Google Scholar] [CrossRef]
- Swenberg, J.A.; Moeller, B.C.; Lu, K.; Rager, J.E.; Fry, R.C.; Starr, T.B. Formaldehyde Carcinogenicity Research: 30 Years and Counting for Mode of Action, Epidemiology, and Cancer Risk Assessment. Toxicol. Pathol. 2013, 41, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Sánchez, L.; Miralles, P.; Salvador, A.; Merino-Sanjuán, M.; Merino, V. In Vitro Skin Penetration of Bronidox, Bronopol and Formaldehyde from Cosmetics. Regul. Toxicol. Pharmacol. 2021, 122, 104888. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.; Marra, F.; Nicoli, S.; Santi, P. In Vitro Skin Permeation and Retention of Parabens from Cosmetic Formulations. Int. J. Cosmet. Sci. 2007, 29, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Okubo, T.; Yokoyama, Y.; Kano, K.; Kano, I. ER-Dependent Estrogenic Activity of Parabens Assessed by Proliferation of Human Breast Cancer MCF-7 Cells and Expression of ERalpha and PR. Food Chem. Toxicol. 2001, 39, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.T.B.; Jeung, E.B. An Evaluation of Estrogenic Activity of Parabens Using Uterine Calbindin-D9k Gene in an Immature Rat Model. Toxicol. Sci. 2009, 112, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D.; Aljarrah, A.; Miller, W.R.; Coldham, N.G.; Sauer, M.J.; Pope, G.S. Concentrations of Parabens in Human Breast Tumours. J. Appl. Toxicol. 2004, 24, 5–13. [Google Scholar] [CrossRef]
- Fransway, A.F.; Fransway, P.J.; Belsito, D.V.; Yiannias, J.A. Paraben Toxicology. Dermatitis 2019, 30, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Sakagami, H.; Fujisawa, S. Cytotoxicity and Apoptosis Induction by Butylated Hydroxyanisole (BHA) and Butylated Hydroxytoluene (BHT). Anticancer Res. 2003, 23, 4693–4701. [Google Scholar]
- Kahl, R.; Kappus, H. [Toxicology of the Synthetic Antioxidants BHA and BHT in Comparison with the Natural Antioxidant Vitamin E]. Z. Lebensm. Unters. Forsch. 1993, 196, 329–338. [Google Scholar] [CrossRef]
- Yu, R.; Mandlekar, S.; Kong, A.N.T. Molecular Mechanisms of Butylated Hydroxylanisole-Induced Toxicity: Induction of Apoptosis through Direct Release of Cytochrome c. Mol. Pharmacol. 2000, 58, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Pop, A.; Kiss, B.; Loghin, F. Endocrine Disrupting Effects of Butylated Hydroxyanisole (BHA—E320). Clujul Med. 2013, 86, 16. [Google Scholar] [PubMed]
- Felter, S.P.; Zhang, X.; Thompson, C. Butylated Hydroxyanisole: Carcinogenic Food Additive to Be Avoided or Harmless Antioxidant Important to Protect Food Supply? Regul. Toxicol. Pharmacol. 2021, 121, 104887. [Google Scholar] [CrossRef]
- Sullivan, J.B.; John, B.; Krieger, G.R. Clinical Environmental Health and Toxic Exposures, 2nd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; ISBN 9780683080278. [Google Scholar]
- 1,4-Dioxane. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1999; Volume 71, pp. 589–602.
- National Toxicology Program: 1,4-Dioxane. In NTP Technical Report on the Toxicology and Carcinogenesis; U.S. Department of Health and Human Services, Public Health Service: Research Triangle Park, NC, USA, 2014.
- Stickney, J.A.; Sager, S.L.; Clarkson, J.R.; Smith, L.A.; Locey, B.J.; Bock, M.J.; Hartung, R.; Olp, S.F. An Updated Evaluation of the Carcinogenic Potential of 1,4-Dioxane. Regul. Toxicol. Pharmacol. 2003, 38, 183–195. [Google Scholar] [CrossRef]
- Kitchin, K.T.; Brown, J.L. Is 1,4-Dioxane a Genotoxic Carcinogen? Cancer Lett. 1990, 53, 67–71. [Google Scholar] [CrossRef]
- Wong, O.; Trent, L.S. An Epidemiological Study of Workers Potentially Exposed to Ethylene Oxide. Br. J. Ind. Med. 1993, 50, 308–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenland, K.; Whelan, E.; Deddens, J.; Stayner, L.; Ward, E. Ethylene Oxide and Breast Cancer Incidence in a Cohort Study of 7576 Women (United States). Cancer Causes Control 2003, 14, 531–539. [Google Scholar] [CrossRef]
- Vincent, M.J.; Kozal, J.S.; Thompson, W.J.; Maier, A.; Dotson, G.S.; Best, E.A.; Mundt, K.A. Ethylene Oxide: Cancer Evidence Integration and Dose-Response Implications. Dose Response 2019, 17, 1559325819888317. [Google Scholar] [CrossRef]
- Hughes, M.F. Arsenic Toxicity and Potential Mechanisms of Action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, V.D.; Vucic, E.A.; Becker-Santos, D.D.; Gil, L.; Lam, W.L. Arsenic Exposure and the Induction of Human Cancers. J. Toxicol. 2011, 2011, 431287. [Google Scholar] [CrossRef] [Green Version]
- Khanjani, N.; Jafarnejad, A.B.; Tavakkoli, L. Arsenic and Breast Cancer: A Systematic Review of Epidemiologic Studies. Rev. Environ. Health 2017, 32, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Gamboa-Loira, B.; Cebrián, M.E.; Franco-Marina, F.; López-Carrillo, L. Arsenic Metabolism and Cancer Risk: A Meta-Analysis. Environ. Res. 2017, 156, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Sawada, N. [Association between Arsenic Intake and Cancer-From the Viewpoint of Epidemiological Study]. Nihon Eiseigaku Zasshi 2018, 73, 265–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowska, S.; Brzóska, M.M. Metals in Cosmetics: Implications for Human Health. J. Appl. Toxicol. 2015, 35, 551–572. [Google Scholar] [CrossRef]
- Sorahan, T.; Esmen, N.A. Lung Cancer Mortality in UK Nickel-Cadmium Battery Workers, 1947–2000. Occup. Environ. Med. 2004, 61, 108–116. [Google Scholar] [CrossRef] [Green Version]
- Il’yasova, D.; Schwartz, G.G. Cadmium and Renal Cancer. Toxicol. Appl. Pharmacol. 2005, 207, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Waalkes, M.P. Cadmium Carcinogenesis. Mutat. Res. 2003, 533, 107–120. [Google Scholar] [CrossRef]
- McElroy, J.A.; Shafer, M.M.; Trentham-Dietz, A.; Hampton, J.M.; Newcomb, P.A. Cadmium Exposure and Breast Cancer Risk. J. Natl. Cancer Inst. 2006, 98, 869–873. [Google Scholar] [CrossRef]
- Bertin, G.; Averbeck, D. Cadmium: Cellular Effects, Modifications of Biomolecules, Modulation of DNA Repair and Genotoxic Consequences (a Review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Waisberg, M.; Joseph, P.; Hale, B.; Beyersmann, D. Molecular and Cellular Mechanisms of Cadmium Carcinogenesis. Toxicology 2003, 192, 95–117. [Google Scholar] [CrossRef]
- Poirier, L.A.; Vlasova, T.I. The Prospective Role of Abnormal Methyl Metabolism in Cadmium Toxicity. Environ. Health Perspect. 2002, 110 (Suppl. S5), 793–795. [Google Scholar] [CrossRef] [Green Version]
- Wani, A.L.; Ara, A.; Usmani, J.A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrick, L. Lead Toxicity, a Review of the Literature. Part 1: Exposure, Evaluation, and Treatment. Altern. Med. Rev. 2006, 11, 2–22. [Google Scholar]
- Steenland, K.; Boffetta, P. Lead and Cancer in Humans: Where Are We Now? Am. J. Ind. Med. 2000, 38, 295–299. [Google Scholar] [CrossRef]
- Skalny, A.V.; Aschner, M.; Sekacheva, M.I.; Santamaria, A.; Barbosa, F.; Ferrer, B.; Aaseth, J.; Paoliello, M.M.B.; Rocha, J.B.T.; Tinkov, A.A. Mercury and Cancer: Where Are We Now after Two Decades of Research? Food Chem. Toxicol. 2022, 164, 113001. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Wang, F.; Luo, Z.; Guo, S.; Strähle, U. Toxicity of Mercury: Molecular Evidence. Chemosphere 2020, 245, 125586. [Google Scholar] [CrossRef]
- Rocha, J.B.T.; Aschner, M.; Dórea, J.G.; Ceccatelli, S.; Farina, M.; Silveira, L.C.L. Mercury Toxicity. J. Biomed. Biotechnol. 2012, 2012, 831890. [Google Scholar] [CrossRef] [PubMed]
- Bernhoft, R.A. Mercury Toxicity and Treatment: A Review of the Literature. J. Environ. Public Health 2012, 2012, 460508. [Google Scholar] [CrossRef]
- Cragle, D.L.; Hollis, D.R.; Qualters, J.R.; Tankersley, W.G.; Fry, S.A. A Mortality Study of Men Exposed to Elemental Mercury. J. Occup. Med. 1984, 26, 817–821. [Google Scholar] [CrossRef]
- Ellingsen, D.G.; Bast-Pettersen, R.; Efskind, J.; Thomassen, Y. Neuropsychological Effects of Low Mercury Vapor Exposure in Chloralkali Workers. Neurotoxicology 2001, 22, 249–258. [Google Scholar] [CrossRef]
- de Souza Queiroz, M.L.; Pena, S.C.; Salles, T.S.I.; de Capitani, E.M.; Saad, S.T.O. Abnormal Antioxidant System in Erythrocytes of Mercury-Exposed Workers. Hum. Exp. Toxicol. 1998, 17, 225–230. [Google Scholar] [CrossRef]
- Gardiner, K.; van Tongeren, M.; Harrington, M. Respiratory Health Effects from Exposure to Carbon Black: Results of the Phase 2 and 3 Cross Sectional Studies in the European Carbon Black Manufacturing Industry. Occup. Environ. Med. 2001, 58, 496–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valberg, P.A.; Long, C.M.; Sax, S.N. Integrating Studies on Carcinogenic Risk of Carbon Black: Epidemiology, Animal Exposures, and Mechanism of Action. J. Occup. Environ. Med. 2006, 48, 1291–1307. [Google Scholar] [CrossRef]
- Gilmour, P.S.; Ziesenis, A.; Morrison, E.R.; Vickers, M.A.; Drost, E.M.; Ford, I.; Karg, E.; Mossa, C.; Schroeppel, A.; Ferron, G.A.; et al. Pulmonary and Systemic Effects of Short-Term Inhalation Exposure to Ultrafine Carbon Black Particles. Toxicol. Appl. Pharmacol. 2004, 195, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Wellmann, J.; Weiland, S.K.; Neiteler, G.; Klein, G.; Straif, K. Cancer Mortality in German Carbon Black Workers 1976-98. Occup. Environ. Med. 2006, 63, 513–521. [Google Scholar] [CrossRef] [Green Version]
- Boland, S.; Hussain, S.; Baeza-Squiban, A. Carbon Black and Titanium Dioxide Nanoparticles Induce Distinct Molecular Mechanisms of Toxicity. Wiley Interdiscip. Rev. Nanomed Nanobiotechnol. 2014, 6, 641–652. [Google Scholar] [CrossRef] [Green Version]
- Valberg, P.A.; Watson, A.Y. Lung Cancer Rates in Carbon-Black Workers Are Discordant with Predictions from Rat Bioassay Data. Regul. Toxicol. Pharmacol. 1996, 24, 155–170. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer Silica Dust, Crystalline, in the Form of Quartz or Cristobalite. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; pp. 1–52.
- Brown, T.P.; Rushton, L. Mortality in the UK Industrial Silica Sand Industry: 1. Assessment of Exposure to Respirable Crystalline Silica. Occup. Environ. Med. 2005, 62, 442–445. [Google Scholar] [CrossRef] [Green Version]
- Ryu, H.J.; Seong, N.W.; So, B.J.; Seo, H.S.; Kim, J.H.; Hong, J.S.; Park, M.K.; Kim, M.S.; Kim, Y.R.; Cho, K.B.; et al. Evaluation of Silica Nanoparticle Toxicity after Topical Exposure for 90 Days. Int. J Nanomed. 2014, 9 (Suppl. S2), 127–136. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.S.; Chang, K.L.B.; Hwang, D.F.; Kong, Z.L. In Vitro Cytotoxicitiy of Silica Nanoparticles at High Concentrations Strongly Depends on the Metabolic Activity Type of the Cell Line. Environ. Sci Technol. 2007, 41, 2064–2068. [Google Scholar] [CrossRef]
- Lin, W.; Huang, Y.-W.; Zhou, X.-D.; Ma, Y. In Vitro Toxicity of Silica Nanoparticles in Human Lung Cancer Cells. Toxicol. Appl. Pharmacol. 2006, 217, 252–259. [Google Scholar] [CrossRef]
- Sun, J.D.; Beskitt, J.L.; Tallant, M.J.; Frantz, S.W. In Vitro Skin Penetration of Monoethanolamine and Diethanolamine Using Excised Skin from Rats, Mice, Rabbits, and Humans. J. Toxicol. Cutan. Ocul. Toxicol. 2008, 15, 131–146. [Google Scholar] [CrossRef]
- Knaak, J.B.; Leung, H.W.; Stott, W.T.; Busch, J.; Bilsky, J. Toxicology of Mono-, Di-, and Triethanolamine. Rev. Environ. Contam. Toxicol. 1997, 149, 1–86. [Google Scholar] [CrossRef] [PubMed]
- Bernauer, U.; Chambers, C.; Chaudhry, Q.; Degen, G.H.; Platzek, T.; Rogiers, V.M.; Rousselle, C. Scientific Committee on Consumer Safety SCCS Opinion on Nitrosamines and Secondary Amines in Cosmetic Products. Available online: https://op.europa.eu/en/publication-detail/-/publication/629e854f-c100-47d4-bd71-0f1df5966db0/language-en (accessed on 21 July 2022).
- Wu, Q.; Ni, X. ROS-Mediated DNA Methylation Pattern Alterations in Carcinogenesis. Curr. Drug Targets 2015, 16, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.S.; Roh, T.H.; Kim, M.K.; Kwon, Y.C.; Choi, S.M.; Kwack, S.J.; Kim, K.B.; Yoon, S.; Kim, H.S.; Lee, B.M. Risk Assessment of N-Nitrosodiethylamine (NDEA) and N-Nitrosodiethanolamine (NDELA) in Cosmetics. J. Toxicol. Environ. Health A 2018, 81, 465–480. [Google Scholar] [CrossRef]
- Lim, D.S.; Lim, S.K.; Kim, M.K.; Kwon, Y.C.; Roh, T.H.; Choi, S.M.; Yoon, S.; Kim, H.S.; Lee, B.M. Formation and Inhibition of N-Nitrosodiethanolamine in Cosmetics under PH, Temperature, and Fluorescent, Ultraviolet, and Visual Light. J. Toxicol. Environ. Health A 2018, 81, 241–253. [Google Scholar] [CrossRef]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef] [Green Version]
- Bernardini, L.; Barbosa, E.; Charão, M.F.; Brucker, N. Formaldehyde Toxicity Reports from in Vitro and in Vivo Studies: A Review and Updated Data. Drug Chem. Toxicol. 2022, 45, 1–13. [Google Scholar] [CrossRef]
- Hauptmann, M.; Lubin, J.H.; Stewart, P.A.; Hayes, R.B.; Blair, A. Mortality from Solid Cancers among Workers in Formaldehyde Industries. Am. J. Epidemiol. 2004, 159, 1117–1130. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.; Hou, J.; Xie, W.; Cheng, H. Investigation on Formaldehyde Release from Preservatives in Cosmetics. Int. J. Cosmet. Sci. 2015, 37, 474–478. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer Formaldehyde. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100F, pp. 401–435. [Google Scholar]
- Petric, Z.; Ruzić, J.; Zuntar, I. The Controversies of Parabens—An Overview Nowadays. Acta Pharm. 2021, 71, 17–32. [Google Scholar] [CrossRef]
- Fransway, A.F.; Fransway, P.J.; Belsito, D.V.; Warshaw, E.M.; Sasseville, D.; Fowler, J.F.; DeKoven, J.G.; Pratt, M.D.; Maibach, H.I.; Taylor, J.S.; et al. Parabens. Dermatitis 2019, 30, 3–31. [Google Scholar] [CrossRef]
- Commission Regulation (EU) No 358/2014 of 9 April 2014 Amending Annexes II and V to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on Cosmetic Products Text with EEA Relevance. Available online: https://eur-lex.europa.eu/eli/reg/2014/358/oj (accessed on 21 July 2022).
- Oishi, S. Effects of Propyl Paraben on the Male Reproductive System. Food Chem. Toxicol. 2002, 40, 1807–1813. [Google Scholar] [CrossRef]
- Barr, L.; Metaxas, G.; Harbach, C.A.J.; Savoy, L.A.; Darbre, P.D. Measurement of Paraben Concentrations in Human Breast Tissue at Serial Locations across the Breast from Axilla to Sternum. J. Appl. Toxicol. 2012, 32, 219–232. [Google Scholar] [CrossRef]
- Handa, O.; Kokura, S.; Adachi, S.; Takagi, T.; Naito, Y.; Tanigawa, T.; Yoshida, N.; Yoshikawa, T. Methylparaben Potentiates UV-Induced Damage of Skin Keratinocytes. Toxicology 2006, 227, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Sablina, A.A.; Budanov, A.V.; Ilyinskaya, G.V.; Agapova, L.S.; Kravchenko, J.E.; Chumakov, P.M. The Antioxidant Function of the P53 Tumor Suppressor. Nat. Med. 2005, 11, 1306–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baran, A.; Yildirim, S.; Ghosigharehaghaji, A.; Bolat, İ; Sulukan, E.; Ceyhun, S.B. An Approach to Evaluating the Potential Teratogenic and Neurotoxic Mechanism of BHA Based on Apoptosis Induced by Oxidative Stress in Zebrafish Embryo (Danio Rerio). Hum. Exp. Toxicol. 2021, 40, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Mizobuchi, M.; Ishidoh, K.; Kamemura, N. A Comparison of Cell Death Mechanisms of Antioxidants, Butylated Hydroxyanisole and Butylated Hydroxytoluene. Drug Chem. Toxicol. 2022, 45, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Panico, A.; Serio, F.; Bagordo, F.; Grassi, T.; Idolo, A.; de Giorgi, M.; Guido, M.; Congedo, M.; de Donno, A. Skin Safety and Health Prevention: An Overview of Chemicals in Cosmetic Products. J. Prev. Med. Hyg. 2019, 60, E50–E57. [Google Scholar] [CrossRef] [PubMed]
- Bergfeld, W.F.; Donald, F.A.C.P.; Belsito, V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Amended Safety Assessment of PEG Propylene Glycol Esters as Used in Cosmetics Status: Re-Review for Panel Review Release; Cosmetic Ingredient Review: Washington, DC, USA, 2016. [Google Scholar]
- Bartsch, H. DNA Adducts in Human Carcinogenesis: Etiological Relevance and Structure-Activity Relationship. Mutat. Res. 1996, 340, 67–79. [Google Scholar] [CrossRef]
- Juhász, M.L.W.; Marmur, E.S. A Review of Selected Chemical Additives in Cosmetic Products. Dermatol. Ther. 2014, 27, 317–322. [Google Scholar] [CrossRef]
- Scientific Committee on Consumer Safety SCCS Scientific Opinion on the Report of the ICCR Working Group: Considerations on Acceptable Trace Level of 1,4-Dioxane in Cosmetic Products. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_194.pdf (accessed on 17 September 2022).
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 93 Carbon Black, Titanium Dioxide, and Talc; IARC: Lyon, France, 2010.
- Puntoni, R.; Ceppi, M.; Gennaro, V.; Ugolini, D.; Puntoni, M.; la Manna, G.; Casella, C.; Franco Merlo, D. Occupational Exposure to Carbon Black and Risk of Cancer. Cancer Causes Control 2004, 15, 511–516. [Google Scholar] [CrossRef]
- Yong, M.; Anderle, L.; Levy, L.; McCunney, R.J. Carbon Black and Lung Cancer Mortality-A Meta-Regression Analysis Based on Three Occupational Cohort Studies. J. Occup. Environ. Med. 2019, 61, 949–954. [Google Scholar] [CrossRef] [PubMed]
- NC: National Institute of Environmental Health and Safety National Toxicology Program. Silica, Crystalline (Respirable Size). In Report on Carcinogens, 14th ed.; Department of Health and Human Services: Research Triangle Park, NC, USA, 2016; pp. 1–2.
- Hirai, T.; Yoshikawa, T.; Nabeshi, H.; Yoshida, T.; Akase, T.; Yoshioka, Y.; Itoh, N.; Tsutsumi, Y. Dermal Absorption of Amorphous Nanosilica Particles after Topical Exposure for Three Days. Pharmazie 2012, 67, 742–743. [Google Scholar] [CrossRef] [PubMed]
- Committee on Consumer Safety, S. Scientific Committee on Consumer Safety SCCS Opinion on Silica, Hydrated Silica, and Silica Surface Modified with Alkyl Silylates (Nano Form). Available online: https://op.europa.eu/en/publication-detail/-/publication/7e9e28a6-d3af-11e5-a4b5-01aa75ed71a1/language-en (accessed on 21 July 2022).
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hostýnek, J.J.; Hinz, R.S.; Lorence, C.R.; Price, M.; Guy, R.H. Metals and the Skin. Crit. Rev. Toxicol. 1993, 23, 171–235. [Google Scholar] [CrossRef] [PubMed]
- Abalaka, S.E.; Enem, S.I.; Idoko, I.S.; Sani, N.A.; Tenuche, O.Z.; Ejeh, S.A.; Sambo, W.K. Heavy Metals Bioaccumulation and Health Risks with Associated Histopathological Changes in Clarias Gariepinus from the Kado Fish Market, Abuja, Nigeria. J. Health Pollut. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Al Osman, M.; Yang, F.; Massey, I.Y. Exposure Routes and Health Effects of Heavy Metals on Children. Biometals 2019, 32, 563–573. [Google Scholar] [CrossRef]
- Kaličanin, B.; Velimirović, D. A Study of the Possible Harmful Effects of Cosmetic Beauty Products on Human Health. Biol. Trace Elem. Res. 2016, 170, 476–484. [Google Scholar] [CrossRef]
- Abrar, S.; Javed, S.; Kiran, S.; Awan, H. Analysis of Lead, Cadmium, and Arsenic in Colored Cosmetics Marketed in Pakistan. J. Public Health Policy 2022, 43, 54–64. [Google Scholar] [CrossRef]
- Gondal, M.A.; Seddigi, Z.S.; Nasr, M.M.; Gondal, B. Spectroscopic Detection of Health Hazardous Contaminants in Lipstick Using Laser Induced Breakdown Spectroscopy. J. Hazard. Mater. 2010, 175, 726–732. [Google Scholar] [CrossRef]
- Goyer, R.A.; Liu, J.; Waalkes, M.P. Cadmium and Cancer of Prostate and Testis. Biometals 2004, 17, 555–558. [Google Scholar] [CrossRef]
- O’Reilly, D.; Buchanan, P. Calcium Channels and Cancer Stem Cells. Cell Calcium 2019, 81, 21–28. [Google Scholar] [CrossRef]
- So, C.L.; Saunus, J.M.; Roberts-Thomson, S.J.; Monteith, G.R. Calcium Signalling and Breast Cancer. Semin. Cell Dev. Biol. 2019, 94, 74–83. [Google Scholar] [CrossRef]
- Silbergeld, E.K. Facilitative Mechanisms of Lead as a Carcinogen. Mutat. Res. 2003, 533, 121–133. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services, National Institutes of Health, National Toxicology Program Technical Report Series No. 408 Toxicology and Carcinogenesis Studies of Mercuric Chloride (CAS No. 7487-94-7). In F344 RATS and B6C3Fl Mice (Gavage Studies); Department of Health and Human Services: Research Triangle Park, NC, USA, 1993.
- Queiroz, M.L.S.; Bincoletto, C.; Quadros, M.R.; de Capitani, E.M. Presence of Micronuclei in Lymphocytes of Mercury Exposed Workers. Immunopharmacol. Immunotoxicol. 1999, 21, 141–150. [Google Scholar] [CrossRef]
- Martín-del-Campo, R.; Bárcenas-Ibarra, A.; Lund, G.; Rodríguez-Ríos, D.; Yong-Villalobos, L.; García-Hernández, J.; García-Gasca, A. Mercury Concentration, DNA Methylation, and Mitochondrial DNA Damage in Olive Ridley Sea Turtle Embryos With Schistosomus Reflexus Syndrome. Vet. Pathol. 2019, 56, 940–949. [Google Scholar] [CrossRef]
- Meier, B.W.; Gomez, J.D.; Kirichenko, O.V.; Thompson, J.A. Mechanistic Basis for Inflammation and Tumor Promotion in Lungs of 2,6-Di-Tert-Butyl-4-Methylphenol-Treated Mice: Electrophilic Metabolites Alkylate and Inactivate Antioxidant Enzymes. Chem. Res. Toxicol. 2007, 20, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Shirai, T.; Hagiwara, A.; Kurata, Y.; Shibata, M.; Fukushima, S.; Ito, N. Lack of Carcinogenicity of Butylated Hydroxytoluene on Long-Term Administration to B6c3f1 Mice. Food Chem. Toxicol. 1982, 20, 861–865. [Google Scholar] [CrossRef]
No. | Type of Cosmetics * | Manufacturing Country | Potential Carcinogen (by INCI Nomenclature) | Place in INCI on Label | Sum of Potential Carcinogens |
---|---|---|---|---|---|
1. | Eyeshadow | Poland | CI 77266 (carbon black) | 7 | 1 |
2. | Eyeshadow | Poland | CI 77266 (carbon black) | 30 | 3 |
Silica | 11 | ||||
Trideceth-10 | 12 | ||||
3. | Eyeshadow | United Kingdom | Silica | 8 | 3 |
Methylparaben, propylparaben | 13, 14 | ||||
4. | Eyeshadow | Poland | Silica | 8 | 1 |
5. | Eyeshadow | Poland | Silica | 4 | 4 |
Methylparaben, propylparaben | 8, 9 | ||||
BHT (tert-butylated hydroxyanisole) | 10 | ||||
6. | Makeup base | Germany | Methylparaben, propylparaben, butylparaben | 11, 13, 16 | 4 |
BHT (tert-butylated hydroxyanisole) | 21 | ||||
7. | Makeup base | Poland | Methylparaben | 18 | 3 |
PEG-40 hydrogenated castor oil, PEG-26 buteth-26 | 11, 12 | ||||
8. | Makeup base | United Kingdom | Imidazolidinyl urea, DMDM hydantoin | 13, 14 | 2 |
9. | Makeup base | France | Methylparaben, butylparaben | 15, 16 | 2 |
10. | Eyeliner | Germany | CI 77266 (carbon black), black 2 | 14 | 4 |
Methylparaben, propylparaben | 9, 10 | ||||
Beheneth-30 (ethoxylated docosan-1-ol) | 4 | ||||
11. | Eyeliner | Sweden | Imidazolidinyl urea | 13 | 3 |
Methylparaben | 12 | ||||
Sorbeth-20 beeswax | 6 | ||||
12. | Eyeliner | France | CI 77266 (carbon black) [nano] | 2 | 3 |
Methylparaben, propylparaben | 9, 11 | ||||
13. | Eyeliner | Poland | Black 2 (CI 77266) | 26 | 2 |
Silica | 16 | ||||
14. | Concealer | United Kingdom | Silica Silylate | 10 | 6 |
BHT (tert-butylated hydroxyanisole) | 47 | ||||
Cetyl PEG/PPG-10/1 dimethicone, bis-PEG/PPG-14/14 dimethicone, laureth-7, laureth-4 | 6, 16, 18, 35 | ||||
15. | Concealer | Poland | DMDM hydantoin | 23 | 7 |
Silica | 30 | ||||
Methylparaben, propylparaben | 27, 29 | ||||
Cetyl PEG/PPG-10/1 dimethicone, steareth-21, PEG-8 | 12, 22, 26 | ||||
16. | Concealer | France | PEG-10 dimethicone, bis-PEG/PPG-14/14 dimethicon, steareth-20 | 7, 8, 18 | 3 |
17. | Concealer | Italy | Cetyl PEG/PPG-10/1 dimethicone, lauryl PEG/PPG-18/18 methicone | 7, 13 | 2 |
18. | Concealer | Poland | PEG/PPG-18/18 dimethicone, laureth-7 | 6, 17 | 2 |
19. | Powder/blusher | Poland | Silica | 2 | 4 |
Methylparaben, propylparaben | 6, 7 | ||||
PEG-8 | 8 | ||||
20. | Powder/blusher | France | Silica | 2 | 3 |
Laureth-4, PEG 150 distearate | 8, 9 | ||||
21. | Powder/blusher | United Kingdom | Methylparaben, propylparaben | 6, 7 | 2 |
22. | Powder/blusher | Poland | Silica | 10 | 2 |
PEG-8 | 15 | ||||
23. | Powder/bronzer | United Kingdom | Methylparaben, ethylparaben, propylparaben, butylparaben | 11, 18, 19, 21 | 5 |
BHT (tert-butylated hydroxyanisole) | 16 | ||||
24. | Powder/bronzer | Italy | Imidazolidinyl urea | 17 | 2 |
Silica | 5 | ||||
25. | Powder/bronzer | United Kingdom | Silica | 11 | 3 |
Methylparaben, propylparaben | 13, 14 | ||||
26. | Powder/bronzer | Poland | Methylparaben, ethylparaben, propylparaben | 11, 12, 13 | 4 |
PEG-8 | 14 | ||||
27. | Powder/highlighter | United Kingdom | Methylparaben, propylparaben | 8, 9 | 1 |
28. | Powder/highlighter | Poland | Methylparaben, ethylparaben, propylparaben, butylparaben | 13, 14, 15, 16 | 5 |
BHT (tert-butylated hydroxyanisole) | 17 | ||||
29. | Highlighter | United Kingdom | Triethanolamine | 16 | 4 |
Diazolidinyl urea | 25 | ||||
Methylparaben, propylparaben | 24, 26 | ||||
30. | Powder | Germany | Silica | 13 | 5 |
Methylparaben, ethylparaben, propylparaben | 19, 24, 30 | ||||
PEG-150 | 12 | ||||
31. | Powder | Germany | Silica | 4 | 5 |
Methylparaben, ethylparaben, propylparaben | 23, 24, 25 | ||||
BHT (tert-butylated hydroxyanisole) | 22 | ||||
32. | Lip-tinting product | United Kingdom | Silica | 14 | 4 |
Propylparaben | 17 | ||||
BHT (tert-butylated hydroxyanisole) | 22 | ||||
Cetyl PEG/PPG-10/1 dimethicone | 12 | ||||
33. | Lip-tinting product | Germany | Silica | 18 | 3 |
Ethylparaben | 17 | ||||
PEG-8 | 16 | ||||
34. | Lip-tinting product | Sweden | Triethanolamine | 7 | 4 |
Methylparaben | 9 | ||||
PEG-55 propylene glycol oleate, PEG-40 Hydrogenated castor oil | 3, 4 | ||||
35. | Lip-tinting product | United Kingdom | Silica | 4 | 2 |
PEG-45/dodecyl glycol copolymer | 10 | ||||
36. | Lip-tinting product | Poland | PPG-3 hydrogenated castor oil, PEG-8 tocopherol | 1, 24 | 2 |
37. | Cosmetic pencil | Poland | BHT (tert-butylated hydroxyanisole) | 15 | 2 |
PEG-8 | 13 | ||||
38. | Cosmetic pencil | Poland | Methylparaben, propylparaben | 21, 22 | 4 |
BHT (tert-butylated hydroxyanisole) | 23 | ||||
PEG-40 hydrogenated castor oil | 7 | ||||
39. | Cosmetic pencil | Germany | CI 77266 (carbon black) (nano) | 7 | 2 |
PEG/PPG-19/19 dimethicone | 3 | ||||
40. | Mascara | Poland | CI 77266 (black 2) (nano) | 30 | 4 |
41. | Mascara | France | CI 77266 black 2 | 13 | 3 |
Silica | 7 | ||||
Methylparaben | 5 | ||||
42. | Mascara | United Kingdom | Triethanolamine | 8 | 4 |
Quaternium 15 | 12 | ||||
Methylparaben, butylparaben | 11, 13 | ||||
43. | Mascara | United Kingdom | Silica | 22 | 3 |
PEG/PPG-17/18 dimethicone, steareth-20 | 13, 14 | ||||
44. | Mascara | Sweden | Triethanolamine | 6 | 8 |
Imidazolidinyl urea | 21 | ||||
Silica | 13 | ||||
Methylparaben, propylparaben | 18, 27 | ||||
BHT (tert-butylated hydroxyanisole) | 28 | ||||
45. | Foundation | France | Silica | 20 | 3 |
BHT (tert-butylated hydroxyanisole) | 31 | ||||
PEG-10 dimethicone | 5 | ||||
46. | Foundation | France | Imidazolidinyl urea | 21 | 4 |
BHT (tert-butylated hydroxyanisole) | 19 | ||||
PEG/PPG-20/20, laureth-7 | 7, 16 | ||||
47. | Foundation | France | Silica [nano]/silica | 11 | 3 |
BHT (tert-butylated hydroxyanisole) | 17 | ||||
PEG-10 dimethicone, cetyl PEG/PPG-10/1 dimethicone | 9, 16 | ||||
48. | Foundation | United Kingdom | Silica | 24 | 6 |
Methylparaben, butylparaben | 17, 20 | ||||
PEG-10 dimethicone, cetyl PEG/PPG-10/1 dimethicone, PEG-20, | 7, 8, 9 | ||||
49. | Foundation | United Kingdom | Silica | 24 | 6 |
Methylparaben, butylparaben | 17, 20 | ||||
PEG-10 dimethicone, cetyl PEG/PPG-10/1 dimethicone, PEG-20, | 7, 8, 9 | ||||
50. | Foundation | United Kingdom | BHT (tert-butylated hydroxyanisole) | 29 | 3 |
Laureth-4, laureth-30 | 20, 22 |
Ingredient Name | Exposure Route | Potential Risks | The Mechanism | IARC Class | References |
---|---|---|---|---|---|
Ethanolamines | Transdermal route |
|
| 2B or 3 | [27,28,29,30] |
Formaldehyde and its donors | Percutaneous route/ respiratory |
|
| 1 (CH2O) | [31,32,33] |
Parabens | Percutaneous route |
|
| not provided | [34,35,36,37,38] |
Tert-butyl compounds | Percutaneous route |
|
| 2B (BHA) 3 (BHT) | [39,40,41,42,43] |
Ethoxylated compounds | Transdermal/ respiratory route |
|
| 1 (EtO) 2B (1,4-dioxane)3 or not provided | [44,45,46,47,48,49,50,51] |
Arsenic | Percutaneous route |
|
| 1 | [52,53,54,55,56] |
Cadmium | Transdermal/ respiratory route |
|
| 1 | [57,58,59,60,61,62,63,64] |
Lead | Transdermal/ respiratory route |
|
| 2B | [57,65,66,67] |
Mercury | Percutaneous route |
|
| 2B | [25,68,69,70,71,72,73,74] |
Carbon black | Transdermal/ respiratory route |
|
| 2B | [75,76,77,78,79,80] |
Silica | Transdermal/ respiratory route |
|
| 1 | [81,82,83,84,85] |
n = 6, 8, 10, 12, 14, 16 | |
2-aminoethanol (IUPAC) ethanolamine | Cocamides Diethanolamides N,N-bis(2-hydroxyethyl)octanamide (n = 6) N,N-bis(2-hydroxyethyl)decanamide (n = 8) N,N-bis(2-hydroxyethyl)dodecanamide (n = 10) N,N-bis(2-hydroxyethyl)tetradecanamide (n = 12) N,N-bis(2-hydroxyethyl)hexadecanamide (n = 14) N,N-bis(2-hydroxyethyl)octadecanamide (n = 14) |
Diethanolamine (DEA) 2-(2-hydroxyethylamino)ethanol | N-nitrosodiethanolamine (NDELA) 2-[(2-hydroxyethyl)(nitroso)amino]ethan-1-ol |
Triethanolamine (TEA), 2,2′,2″-nitrilotriethanol 2-(bis(2-hydroxyethyl)amino)ethanol | N-nitrosodiethylamine (NDEA) Diethylnitrous amide N-ethyl-N-nitrosoethanamine |
Quaternium-15 1-(3-chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride | |
DMDM hydantoin 1,3-Bis(hydroxymethyl)-5,5-dimethylimidazolidine-2,4-dione | |
Imidazolidinyl urea 1,1’-methylenebis{3-[4-(hydroxymethyl)-2,5-dioxoimidazolidin-4-yl]urea} | |
Sodium N-(hydroxymethyl)glycinate | |
Polynoxylin (poly) methylene-N,N’-bis(hydroxymethyl)urea | |
Diazolidinyl urea 1-[3,4-bis(hydroxymethyl)-2,5-dioxoimidazolidin-4-yl]-1,3-bis(hydroxymethyl)urea | |
Glyoxal oxalaldehyde | |
Bronopol 2-bromo-2-nitropropane-1,3-diol | |
Bronidox 5-bromo-5-nitro-1,3-dioxane |
R = CH3 R = CH2CH3 R = CH(CH3)2 R = (CH2)2CH3 R = CH2CH(CH3)2 R = (CH2)3CH3 R = CH2C6H5 | methylparaben ethylparaben isopropylparaben propylparaben isobutylparaben butylparaben benzylparaben | |
Paraben para-hydroxybenzoate 4-hydroxybenzoate |
BHA, butylated hydroxyanisoles 2-tert-butyl-4-hydroxyanisole, 3-tert-butyl-4-hydroxyanisole 2-tert-butyl-4-methoxyphenol and 3-tert-butyl-4-methoxyphenol (IUPAC) | BHT, butylated hydroxytoluene 2,6-di-tert-butyl-4-methylphenol |
Laureth, polyethylene glycol monododecyl ether, ethoxylated dodecanol (lauryl alcohol), R = CH3(CH2)11 Steareth, polyethylene glycol monooctadecyl ether, ethoxylated octadecanol (stearyl alcohol), R = CH3(CH2)17 Ceteth, polyethylene glycol monohexadecyl ether, ethoxylated hexadecanol (cetyl alcohol), R = CH3(CH2)15 | 1,4-dioxane |
Ethylene oxide Oxirane, epoxyethane | ethylene glycol ethane-1,2-diol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balwierz, R.; Biernat, P.; Jasińska-Balwierz, A.; Siodłak, D.; Kusakiewicz-Dawid, A.; Kurek-Górecka, A.; Olczyk, P.; Ochędzan-Siodłak, W. Potential Carcinogens in Makeup Cosmetics. Int. J. Environ. Res. Public Health 2023, 20, 4780. https://doi.org/10.3390/ijerph20064780
Balwierz R, Biernat P, Jasińska-Balwierz A, Siodłak D, Kusakiewicz-Dawid A, Kurek-Górecka A, Olczyk P, Ochędzan-Siodłak W. Potential Carcinogens in Makeup Cosmetics. International Journal of Environmental Research and Public Health. 2023; 20(6):4780. https://doi.org/10.3390/ijerph20064780
Chicago/Turabian StyleBalwierz, Radosław, Paweł Biernat, Agata Jasińska-Balwierz, Dawid Siodłak, Anna Kusakiewicz-Dawid, Anna Kurek-Górecka, Paweł Olczyk, and Wioletta Ochędzan-Siodłak. 2023. "Potential Carcinogens in Makeup Cosmetics" International Journal of Environmental Research and Public Health 20, no. 6: 4780. https://doi.org/10.3390/ijerph20064780