Labour-Market Characteristics and Self-Rated Health: Evidence from the China Health and Retirement Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Labour-Market Characteristics for Working Population
2.2. Labour-Market Characteristics for Employees
2.3. Self-Rated Health
2.4. Covariates
2.5. Statistical Analyses
3. Results
Sample Characteristics
4. Discussion
4.1. Main Finding of This Study
4.2. Findings in the Context of Existing Studies
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics: Annual data 1949–2020. 2022. Available online: https://data.stats.gov.cn/adv.htm?m=advquery&cn=C01 (accessed on 1 February 2022).
- United Nations Population Division. World Population Prospects 2019. 2019. Available online: https://population.un.org/wpp/Download/Standard/Population/ (accessed on 1 February 2022).
- Office of the Leading Group of the State Council for the Seventh National Population Census. China Population Census Yearbook 2020 (Book 2); China Statistics Press: Beijing, China, 2020. [Google Scholar]
- GBD 2019 Diseases and Injuries Collaborators. Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Health Estimates 2019: Disease Burden by Cause, Age, Sex, by Country and by Region, 2000–2019; WHO: Geneva, Switzerland, 2020.
- DeSalvo, K.B.; Bloser, N.; Reynolds, K.; He, J.; Muntner, P. Mortality Prediction with a Single General Self-Rated Health Question: A Meta-Analysis. J. Gen. Intern. Med. 2006, 20, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Mossey, J.M.; Shapiro, E. Self-Rated Health: A Predictor of Mortality Among the Elderly. Am. J. Public Health 1982, 72, 800–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, E.S.H.; Kean, Y.M.; Slymen, D.J.; Liu, W.T.; Zhang, M.; Katzman, R. Self-Perceived Health and 5-Year Mortality Risks among the Elderly in Shanghai, China. Am. J. Epidemiol. 1998, 147, 880–890. [Google Scholar] [CrossRef]
- Pan, Y.; Pikhartova, J.; Bobak, M.; Pikhart, H. Reliability and predictive validity of two scales of self-rated health in China: Results from China Health and Retirement Longitudinal Study (CHARLS). BMC Public Health 2022, 22, 1863. [Google Scholar] [CrossRef] [PubMed]
- Bamia, C.; Orfanos, P.; Juerges, H.; Schöttker, B.; Brenner, H.; Lorbeer, R.; Aadahl, M.; Matthews, C.E.; Klinaki, E.; Katsoulis, M.; et al. Self-rated health and all-cause and cause-specific mortality of older adults: Individual data meta-analysis of prospective cohort studies in the CHANCES Consortium. Maturitas 2017, 103, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavaddat, N.; Valderas, J.M.; van der Linde, R.; Khaw, K.T.; Kinmonth, A.L. Association of self-rated health with multimorbidity, chronic disease and psychosocial factors in a large middle-aged and older cohort from general practice: A cross-sectional study. BMC Fam. Pract. 2014, 15, 185. [Google Scholar] [CrossRef] [Green Version]
- Crossley, T.F.; Kennedy, S. The reliability of self-assessed health status. J. Health Econ. 2002, 21, 643–658. [Google Scholar] [CrossRef]
- Zajacova, A.; Dowd, J.B. Reliability of self-rated health in US adults. Am. J. Epidemiol. 2011, 174, 977–983. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Kim, C.Y.; Park, J.K.; Kawachi, I. Is precarious employment damaging to self-rated health? Results of propensity score matching methods, using longitudinal data in South Korea. Soc. Sci. Med. 2008, 67, 1982–1994. [Google Scholar] [CrossRef]
- Wong, K.; Chan, A.H.S.; Ngan, S.C. The Effect of Long Working Hours and Overtime on Occupational Health: A Meta-Analysis of Evidence from 1998 to 2018. Int. J. Environ. Res. Public Health 2019, 16, 2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pega, F.; Náfrádi, B.; Momen, N.C.; Ujita, Y.; Streicher, K.N.; Prüss-Üstün, A.M.; Descatha, A.; Driscoll, T.; Fischer, F.M.; Godderis, L.; et al. Global, regional, and national burdens of ischemic heart disease and stroke attributable to exposure to long working hours for 194 countries, 2000–2016: A systematic analysis from the WHO/ILO joint estimates of the work-related burden of disease and injury. Environ. Int. 2021, 154, 106595. [Google Scholar] [CrossRef] [PubMed]
- Chu, L. Impact of long working hours on health based on observations in China. BMC Public Health 2021, 21, 1347. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, W.; Choi, W.J.; Ham, S.; Kang, S.K. Association between Working Hours and Self-Rated Health. Int. J. Environ. Res. Public Health 2020, 17, 2736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, T.; Suzuki, E.; Takao, S.; Doi, H. Long working hours and metabolic syndrome among Japanese men: A cross-sectional study. BMC Public Health 2012, 12, 395. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Oh, S.-K.; Seok, H.; Kim, S.-K.; Choi, J.R.; Oh, S.-S.; Koh, S.-B. Long Working Hours and Poor Self-Rated Health in the Young Working Population in Korea. J. Occup. Environ. Med. 2019, 61, e291–e296. [Google Scholar] [CrossRef]
- Li, J.; Pega, F.; Ujita, Y.; Brisson, C.; Clays, E.; Descatha, A.; Ferrario, M.M.; Godderis, L.; Iavicoli, S.; Landsbergis, P.A.; et al. The effect of exposure to long working hours on ischaemic heart disease: A systematic review and meta-analysis from the WHO/ILO joint estimates of the work-related burden of disease and injury. Environ. Int. 2020, 142, 105739. [Google Scholar] [CrossRef]
- Descatha, A.; Sembajwe, G.; Pega, F.; Ujita, Y.; Baer, M.; Boccuni, F.; Di Tecco, C.; Duret, C.; Evanoff, B.A.; Gagliardi, D.; et al. The effect of exposure to long working hours on stroke: A systematic review and meta-analysis from the WHO/ILO joint estimates of the work-related burden of disease and injury. Environ. Int. 2020, 142, 105746. [Google Scholar] [CrossRef]
- Tayama, J.; Li, J.; Munakata, M. Working Long Hours is Associated with Higher Prevalence of Diabetes in Urban Male Chinese Workers: The Rosai Karoshi Study. Stress Health 2016, 32, 84–87. [Google Scholar] [CrossRef]
- Bockerman, P.; Ilmakunnas, P. Unemployment and self-assessed health: Evidence from panel data. Health Econ. 2009, 18, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Poon, A.N.; Wu, Z.; Jian, W.; Chan, K.Y. Is occupation a good predictor of self-rated health in China? PLoS ONE 2015, 10, e0125274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luckhaupt, S.E.; Alterman, T.; Li, J.; Calvert, G.M. Job Characteristics Associated with Self-Rated Fair or Poor Health among US Workers. Am. J. Prev. Med. 2017, 53, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Zhang, X. Social transition and health inequality in China: An age-period-cohort analysis. Public Health 2020, 180, 185–195. [Google Scholar] [CrossRef]
- Feng, J.; Jiang, H.; Shen, X.; Lei, Z.; Li, L.; Zhu, Y.; Zhang, M.; Yang, T.; Meng, X.; Di, H.; et al. Occupational stress and associated factors among general practitioners in China: A national cross-sectional study. BMC Public Health 2022, 22, 1061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, L.; Zhou, X.; Zhang, X.; Ke, Z.; Wang, Z.; Chen, Q.; Dong, X.; Du, L.; Fang, J.; et al. Characteristics and Workload of Pediatricians in China. Pediatrics 2019, 144, e20183532. [Google Scholar] [CrossRef]
- Zhao, Y.; Strauss, J.; Yang, G.; Giles, J.; Hu, P.; Hu, Y.; Lei, X.; Liu, M.; Park, A.; Smithet, J.P.; et al. China Health and Retirement Longitudinal Study—2011–2012 National Baseline Users’ Guide; National School of Development, Peking University: Beijing, China, 2013. [Google Scholar]
- Zhao, Y.; Hu, Y.; Smith, J.P.; Strauss, J.; Yang, G. Cohort profile: The China Health and Retirement Longitudinal Study (CHARLS). Int. J. Epidemiol. 2014, 43, 61–68. [Google Scholar] [CrossRef] [Green Version]
- International Labour Organization. International Standard Classification of Occupations: ISCO-08 Geneva: International Labour Office. 2012. Available online: https://www.ilo.org/public/english/bureau/stat/isco/index.htm (accessed on 1 January 2022).
- Gong, P.; Liang, S.; Carlton, E.J.; Jiang, Q.; Wu, J.; Wang, L.; Remais, J.V. Urbanisation and health in China. Lancet 2012, 379, 843–852. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. National Report on Migrant Worker Monitoring and Survey 2020: National Bureau of Statistics of China. 2021. Available online: http://www.stats.gov.cn/tjsj/zxfb/202104/t20210430_1816933.html (accessed on 1 January 2022).
- National Bureau of Statistics of China. China Statistical Yearbook 2011; China Statistics Press: Beijing, China, 2011. [Google Scholar]
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC.: College Station, TX, USA, 2019. [Google Scholar]
- World Health Organization. Health Interview Surveys: Towards International Harmonization of Methods and Instruments; WHO Office for Europe: Copenhagen, Denmark, 1996.
- Arrighi, H.M.; Hertz-Picciotto, I. The Evolving Concept of the Healthy Worker Survivor Effect. Epidemiology 1994, 5, 189–196. [Google Scholar] [CrossRef]
- Jurges, H.; Avendano, M.; Mackenbach, J.P. Are different measures of self-rated health comparable? An assessment in five European countries. Eur. J. Epidemiol. 2008, 23, 773–781. [Google Scholar] [CrossRef] [Green Version]
- Reche, E.; Konig, H.H.; Hajek, A. Income, Self-Rated Health, and Morbidity. A Systematic Review of Longitudinal Studies. Int. J. Environ. Res. Public Health 2019, 16, 2884. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Chen, Y.; Feng, Z.; Chen, X.; Wang, Z.; Zhu, J.; Jin, J.; Yao, Q.; Xiang, L.; Yao, L.; et al. Barriers of effective health insurance coverage for rural-to-urban migrant workers in China: A systematic review and policy gap analysis. BMC Public Health 2020, 20, 408. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Cook, S.; Salazar, M.A. Internal migration and health in China. Lancet 2008, 372, 1717–1719. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ji, Y.; Dong, H.; Chang, C. The prevalence of smoking, second-hand smoke exposure, and knowledge of the health hazards of smoking among internal migrants in 12 provinces in China: A cross-sectional analysis. BMC Public Health 2018, 18, 655. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Li, X.; Wang, B.; Hong, Y.; Fang, X.; Qin, X.; Stanton, B. Discrimination, perceived social inequity, and mental health among rural-to-urban migrants in China. Community Ment. Health J. 2011, 47, 171–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Dai, J.; Wu, N.; Gao, J.; Fu, H. The mental health and depression of rural-to-urban migrant workers compared to non-migrant workers in Shanghai: A cross-sectional study. Int. Health 2019, 11, S55–S63. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Liu, Y.; Zhu, Z.; Li, Z. Does where you live matter to your health? Investigating factors that influence the self-rated health of urban and rural Chinese residents: Evidence drawn from Chinese General Social Survey data. Health Qual. Life Outcomes 2017, 15, 78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, S.; Zhang, G.; Wu, S. Internal migration and the health of the returned population: A nationally representative study of China. BMC Public Health 2015, 15, 719. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Fan, H.; Chu, L. The Double-Burden Effect: Does the Combination of Informal Care and Work Cause Adverse Health Outcomes among Females in China? J. Aging Health 2020, 32, 1222–1232. [Google Scholar] [CrossRef]
- Luo, J.; Qu, Z.; Rockett, I.; Zhang, X. Employment status and self-rated health in north-western China. Public Health 2010, 124, 174–179. [Google Scholar] [CrossRef]
N (Col %) | Self-Rated Health (Row %) | p-Values 1 | ||
---|---|---|---|---|
Very Good/Good/Fair | Poor/Very Poor | |||
N = 3864 | N = 3313 (86) | N = 551 (14) | ||
Age | ||||
45–49 | 1424 (37) | 1271 (89) | 153 (11) | Ref |
50–54 | 826 (21) | 711 (86) | 115 (14) | 0.02 |
55–59 | 890 (23) | 746 (84) | 144 (16) | 0.001 |
60 or over | 724 (19) | 585 (81) | 139 (19) | <0.001 |
Sex | ||||
Male | 2456 (64) | 2150 (88) | 306 (13) | Ref |
Female | 1408 (36) | 1163 (83) | 245 (17) | <0.001 |
Marital status | ||||
Married | 3603 (93) | 3104 (86) | 499 (14) | Ref |
Unmarried | 261 (7) | 209 (80) | 52 (20) | 0.01 |
Education | ||||
High school or above | 924 (24) | 825 (89) | 99 (11) | Ref |
Middle school | 1112 (29) | 983 (88) | 129 (12) | 0.53 |
Elementary school | 790 (20) | 680 (86) | 110 (14) | 0.04 |
Lower than elementary school | 539 (14) | 445 (83) | 94 (17) | <0.001 |
Illiterate | 499 (13) | 380 (76) | 119 (24) | <0.001 |
Residence | ||||
Urban | 1042 (27) | 926 (89) | 116 (11) | Ref |
Migrant | 1103 (29) | 961 (87) | 142 (13) | 0.22 |
Rural | 1719 (45) | 1426 (83) | 293 (17) | <0.001 |
Regions | ||||
East | 1613 (42) | 1422 (88) | 191 (12) | Ref |
Central | 1056 (27) | 896 (85) | 160 (15) | 0.01 |
West | 903 (23) | 743 (82) | 160 (18) | <0.001 |
Northeast | 292 (8) | 252 (86) | 40 (14) | 0.37 |
Smoking status | ||||
Never smoker | 2008 (52) | 1711 (85) | 297 (15) | Ref |
Former smoker | 347 (9) | 297 (86) | 50 (14) | 0.85 |
Current smoker | 1509 (39) | 1305 (87) | 204 (14) | 0.29 |
Alcohol drinking | ||||
Not at all | 2088 (54) | 1715 (82) | 373 (18) | Ref |
Occasional drinker | 395 (10) | 349 (88) | 46 (12) | 0.003 |
Frequent drinker | 1381 (36) | 1249 (90) | 132 (10) | <0.001 |
N (Col %) | Poor SRH (Prevalence %) | OR (95% CI) Age- and Sex-Adjusted | OR (95% CI) Fully Adjusted 1 | |
---|---|---|---|---|
N = 3864 | N = 551 (14) | |||
Employment status | ||||
Employed | 2449 (63) | 293 (12) | Ref | Ref |
Self-employed | 1055 (27) | 154 (15) | 1.23 (1.00, 1.52) | 1.15 (0.93, 1.43) |
Unpaid family business | 259 (7) | 71 (27) | 2.34 (1.72, 3.18) ** | 2.07 (1.51, 2.84) ** |
Not enough information to classify | 101 (3) | 33 (33) | 3.08 (1.99, 4.79) ** | 2.55 (1.62, 4.02) ** |
Weekly working hours | ||||
1–39 h/week | 735 (19) | 134 (18) | 1.83 (1.35, 2.48) ** | 1.60 (1.17, 2.18) * |
40–49 h/week | 794 (21) | 78 (10) | Ref | Ref |
50–59 h/week | 731 (19) | 76 (10) | 1.01 (0.73, 1.42) | 0.92 (0.65,1.30) |
≥60 h/week | 1148 (30) | 158 (14) | 1.39 (1.04, 1.85) * | 1.24 (0.92, 1.67) |
Missing 2 | 456 (12) | 105 (23) | 2.35 (1.69, 3.25) ** | 1.98 (1.41, 2.77) ** |
Public or private sectors | ||||
Public | 846 (22) | 88 (10) | Ref | Ref |
Private | 3004 (78) | 461 (15) | 1.45 (1.13, 1.85) * | 1.24 (0.94,1.64) |
Missing 3 | 14 (0.4) | 2 (14) | 1.27 (0.27, 5.83) | 0.95 (0.20, 4.52) |
Earned income | ||||
1 (Highest) | 626 (16) | 42 (7) | Ref | Ref |
2 | 643 (17) | 67 (10) | 1.60 (1.07, 2.39) * | 1.59 (1.06, 2.40) * |
3 | 613 (16) | 55 (9) | 1.25 (0.82, 1.90) | 1.18 (0.77, 1.81) |
4 | 651 (17) | 95 (15) | 2.13 (1.45, 3.13) ** | 1.92 (1.29, 2.86) * |
5 (Lowest) | 640 (17) | 139 (22) | 3.19 (2.19, 4.65) ** | 2.72 (1.83, 4.02) ** |
Missing 3 | 691 (18) | 153 (22) | 3.42 (2.37, 4.94) ** | 2.99 (2.04, 4.38) ** |
Occupation | ||||
Managers and professionals | 942 (24) | 122 (13) | Ref | Ref |
Technicians and associate professionals | 118 (3) | 9 (8) | 0.57 (0.28, 1.16) | 0.65 (0.32, 1.34) |
Clerks and workers | 1996 (52) | 262 (13) | 1.01 (0.80, 1.27) | 0.95 (0.74, 1.21) |
Elementary occupations | 423 (11) | 61 (14) | 1.06 (0.76, 1.48) | 0.96 (0.68, 1.36) |
Missing 2 | 385 (10) | 97 (25) | 1.97 (1.45, 2.67) ** | 1.66 (1.21, 2.28) * |
Length of current job | ||||
≤10 years | 2057 (53) | 281 (14) | Ref | Ref |
>10 years | 1419 (37) | 172 (12) | 0.91 (0.74, 1.12) | 1.00 (0.81, 1.24) |
Missing 3 | 388 (10) | 98 (25) | 1.89 (1.45, 2.46) ** | 1.77 (1.35, 2.33) ** |
Employer-provided/self-employed covered insurances | ||||
At least one insurance | 887 (23) | 91 (10) | Ref | Ref |
None | 2516 (65) | 372 (15) | 1.35 (1.05, 1.73) * | 1.06 (0.80, 1.40) |
Missing 3 | 461 (12) | 88 (19) | 1.55 (1.11, 2.16) * | 1.31 (0.93, 1.84) |
N (Col %) | Poor SRH (Prevalence %) | OR (95% CI) Age- and Sex-Adjusted | OR (95% CI) Fully Adjusted 1 | |
---|---|---|---|---|
N = 2449 | N = 293 (12) | |||
Supervisory position | ||||
Yes | 340 (14) | 23 (7) | Ref | Ref |
No | 2052 (84) | 262 (13) | 1.86 (1.19, 2.91) * | 1.62 (1.01, 2.58) * |
Missing 2 | 57 (2) | 8 (14) | 1.82 (0.76, 4.35) | 1.45 (0.59, 3.55) |
Receiving wages from | ||||
Place of work | 2223 (91) | 258 (12) | Ref | Ref |
Labour dispatch company | 202 (8) | 29 (14) | 1.27 (0.84, 1.93) | 1.11 (0.72, 1.70) |
Missing 2 | 24 (1) | 6 (25) | 2.13 (0.83, 5.47) | 1.70 (0.65, 4.47) |
Employment type at current workplace | ||||
Contract worker | 753 (31) | 72 (10) | Ref | Ref |
Labour dispatch worker | 182 (7) | 19 (10) | 1.08 (0.63, 1.84) | 0.99 (0.57, 1.71) |
Casual/Part-time worker | 1299 (53) | 174 (13) | 1.34 (1.00, 1.80) | 1.14 (0.81, 1.60) |
Missing 3 | 215 (9) | 28 (13) | 1.33 (0.83, 2.12) | 1.26 (0.78, 2.03) |
Labour contract in written form | ||||
Yes | 588 (24) | 51 (9) | Ref | Ref |
No | 1787 (73) | 226 (13) | 1.41 (1.02, 1.95) * | 1.21 (0.84, 1.73) |
Missing 2 | 74 (3) | 16 (22) | 2.53 (1.34, 4.76) * | 2.09 (1.08, 4.04) * |
Asked if had labour contract: Labour contract period | ||||
Defined period | 284 (12) | 26 (9) | Ref | Ref |
Not defined | 299 (12) | 25 (8) | 0.88 (0.50, 1.57) | 0.90 (0.50, 1.62) |
Same as the term of the project | 7 (0.3) | 0 (0) | - | - |
Missing 3 | 1859 (76) | 242 (13) | 1.35 (0.88, 2.08) | 1.17 (0.75, 1.84) |
Paid vacation/paid sick leave (Num. of Days) | ||||
≥1 | 306 (13) | 25 (8) | Ref | Ref |
0 | 2083 (85) | 258 (12) | 1.45 (0.94, 2.23) | 1.21 (0.76, 1.92) |
Missing 3 | 60 (2) | 10 (17) | 1.82 (0.81, 4.06) | 1.39 (0.61, 3.19) |
Fringe benefits | ||||
Yes | 722 (30) | 71 (10) | Ref | Ref |
No | 1650 (67) | 206 (13) | 1.27 (0.95, 1.69) | 1.22 (0.91, 1.63) |
Missing 2 | 77 (3) | 16 (21) | 2.10 (1.14, 3.86) * | 1.86 (1.00, 3.46) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Pikhart, H.; Bobak, M.; Pikhartova, J. Labour-Market Characteristics and Self-Rated Health: Evidence from the China Health and Retirement Longitudinal Study. Int. J. Environ. Res. Public Health 2023, 20, 4748. https://doi.org/10.3390/ijerph20064748
Pan Y, Pikhart H, Bobak M, Pikhartova J. Labour-Market Characteristics and Self-Rated Health: Evidence from the China Health and Retirement Longitudinal Study. International Journal of Environmental Research and Public Health. 2023; 20(6):4748. https://doi.org/10.3390/ijerph20064748
Chicago/Turabian StylePan, Yuwei, Hynek Pikhart, Martin Bobak, and Jitka Pikhartova. 2023. "Labour-Market Characteristics and Self-Rated Health: Evidence from the China Health and Retirement Longitudinal Study" International Journal of Environmental Research and Public Health 20, no. 6: 4748. https://doi.org/10.3390/ijerph20064748