Differences in Emotional Conflict Processing between High and Low Mindfulness Adolescents: An ERP Study
Abstract
:1. Introduction
1.1. Mindfulness
1.2. Mindfulness and Inhibitory Control
1.3. ERP and Inhibitory Control
1.4. The Present Study
2. Methods
2.1. Sample
2.2. Stimuli
2.3. Procedures
2.4. EEG Recording, Data Collection, and Analysis
3. Results
4. Discussion
5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biegel, G.M.; Brown, K.W.; Shapiro, S.L.; Schubert, C.M. Mindfulness-based stress reduction for the treatment of adolescent psychiatric outpatients: A randomized clinical trial. J. Consult Clin. Psychol 2009, 77, 855–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broderick, P.C.; Metz, S. Learning to BREATHE: A Pilot Trial of a Mindfulness Curriculum for Adolescents. Adv. Sch. Ment. Health Promot. 2011, 2, 35–46. [Google Scholar] [CrossRef]
- Bluth, K.; Blanton, P.W. Mindfulness and Self-Compassion: Exploring Pathways to Adolescent Emotional Well-Being. J. Child Fam. Stud. 2014, 23, 1298–1309. [Google Scholar] [CrossRef] [PubMed]
- Casey, B.J.; Duhoux, S.; Malter Cohen, M. Adolescence: What do transmission, transition, and translation have to do with it? Neuron 2010, 67, 749–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, A.; Casey, B.J. The Adolescent Brain and the Emergence and Peak of Psychopathology. J. Infant Child Adolesc Psychother. 2015, 14, 3–15. [Google Scholar] [CrossRef]
- Ahmed, S.P.; Bittencourt-Hewitt, A.; Sebastian, C.L. Neurocognitive bases of emotion regulation development in adolescence. Dev. Cogn. Neurosci. 2015, 15, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Eddy, M.D.; Brunye, T.T.; Tower-Richardi, S.; Mahoney, C.R.; Taylor, H.A. The effect of a brief mindfulness induction on processing of emotional images: An ERP study. Front. Psychol. 2015, 6, 1391. [Google Scholar] [CrossRef] [Green Version]
- Reina, C.S.; Kudesia, R.S. Wherever you go, there you become: How mindfulness arises in everyday situations. Organ. Behav. Hum. Decis. Process. 2020, 159, 78–96. [Google Scholar] [CrossRef]
- Lindsay, E.K.; Creswell, J.D. Mechanisms of mindfulness training: Monitor and Acceptance Theory (MAT). Clin. Psychol. Rev. 2017, 51, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Eisenlohr-Moul, T.A.; Peters, J.R.; Pond, R.S., Jr.; DeWall, C.N. Both trait and state mindfulness predict lower aggressiveness via anger rumination: A multilevel mediation analysis. Mindfulness 2016, 7, 713–726. [Google Scholar] [CrossRef]
- Brown, K.W.; Ryan, R.M. The benefits of being present: Mindfulness and its role in psychological well-being. J. Pers. Soc. Psychol. 2003, 84, 822–848. [Google Scholar] [CrossRef] [Green Version]
- Jha, A.P.; Krompinger, J.; Baime, M.J. Mindfulness training modifies subsystems of attention. Cogn. Affect. Behav. Neurosci. 2007, 7, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Grossman, P.; Niemann, L.; Schmidt, S.; Walach, H. Mindfulness-based stress reduction and health benefits: A meta-analysis. J. Psychosom. Res. 2004, 57, 35–43. [Google Scholar] [CrossRef]
- Karremans, J.C.; Schellekens, M.P.; Kappen, G. Bridging the Sciences of Mindfulness and Romantic Relationships. Pers. Soc. Psychol. Rev. 2017, 21, 29–49. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Posner, M.I. Training brain networks and states. Trends Cogn. Sci. 2014, 18, 345–350. [Google Scholar] [CrossRef]
- Greco, L.A.; Baer, R.A.; Smith, G.T. Supplemental Material for Assessing Mindfulness in Children and Adolescents: Development and Validation of the Child and Adolescent Mindfulness Measure (CAMM). Psychol. Assess. 2011, 23, 606–614. [Google Scholar] [CrossRef]
- Baer, R.A. Mindfulness Training as a Clinical Intervention: A Conceptual and Empirical Review. Clin. Psychol. Sci. Pract. 2003, 10, 125–143. [Google Scholar] [CrossRef]
- Shapiro, S.L.; Carlson, L.E.; Astin, J.A.; Freedman, B. Mechanisms of mindfulness. J. Clin. Psychol. 2006, 62, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Vlemincx, E.; Vigo, D.; Vansteenwegen, D.; Van den Bergh, O.; Van Diest, I. Do not worry, be mindful: Effects of induced worry and mindfulness on respiratory variability in a nonanxious population. Int. J. Psychophysiol. 2013, 87, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Marusak, H.A.; Elrahal, F.; Peters, C.A.; Kundu, P.; Lombardo, M.V.; Calhoun, V.D.; Goldberg, E.K.; Cohen, C.; Taub, J.W.; Rabinak, C.A. Mindfulness and dynamic functional neural connectivity in children and adolescents. Behav. Brain. Res. 2018, 336, 211–218. [Google Scholar] [CrossRef]
- Dodich, A.; Zollo, M.; Crespi, C.; Cappa, S.F.; Laureiro Martinez, D.; Falini, A.; Canessa, N. Short-term Sahaja Yoga meditation training modulates brain structure and spontaneous activity in the executive control network. Brain. Behav. 2019, 9, e01159. [Google Scholar] [CrossRef] [PubMed]
- Wessel, J.R.; Aron, A.R. Inhibitory motor control based on complex stopping goals relies on the same brain network as simple stopping. NeuroImage 2014, 103, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavazzi, G.; Giovannelli, F.; Curro, T.; Mascalchi, M.; Viggiano, M.P. Contiguity of proactive and reactive inhibitory brain areas: A cognitive model based on ALE meta-analyses. Brain. Imaging Behav. 2021, 15, 2199–2214. [Google Scholar] [CrossRef]
- Meyer, H.C.; Bucci, D.J. Neural and behavioral mechanisms of proactive and reactive inhibition. Learn. Mem. 2016, 23, 504–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmonds, D.J.; Pekar, J.J.; Mostofsky, S.H. Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 2008, 46, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Oberle, E.; Schonert-Reichl, K.A.; Lawlor, M.S.; Thomson, K.C. Mindfulness and Inhibitory Control in Early Adolescence. J. Early Adolesc. 2012, 32, 565–588. [Google Scholar] [CrossRef]
- Heeren, A.; Van Broeck, N.; Philippot, P. The effects of mindfulness on executive processes and autobiographical memory specificity. Behav. Res. Ther. 2009, 47, 403–409. [Google Scholar] [CrossRef]
- Zylowska, L.; Ackerman, D.L.; Yang, M.H.; Futrell, J.L.; Horton, N.L.; Hale, T.S.; Pataki, C.; Smalley, S.L. Mindfulness meditation training in adults and adolescents with ADHD: A feasibility study. J. Atten. Disord. 2008, 11, 737–746. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Tang, R.; Posner, M.I. Brief meditation training induces smoking reduction. Proc. Natl. Acad. Sci. USA 2013, 110, 13971–13975. [Google Scholar] [CrossRef] [Green Version]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Guarino, A.; Forte, G.; Giovannoli, J.; Casagrande, M. Executive functions in the elderly with mild cognitive impairment: A systematic review on motor and cognitive inhibition, conflict control and cognitive flexibility. Aging Ment. Health 2020, 24, 1028–1045. [Google Scholar] [CrossRef] [PubMed]
- Saunders, B.; Jentzsch, I. Reactive and proactive control adjustments under increased depressive symptoms: Insights from the classic and emotional-face Stroop task. Q. J. Exp. Psychol. 2014, 67, 884–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egner, T.; Etkin, A.; Gale, S.; Hirsch, J. Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb. Cortex 2008, 18, 1475–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.H.; Kramer, A.F.; Song, T.F.; Wu, C.H.; Hung, T.M.; Chang, Y.K. Acute Exercise and Neurocognitive Development in Preadolescents and Young Adults: An ERP Study. Neural Plast. 2017, 2017, 2631909. [Google Scholar] [CrossRef] [Green Version]
- Larson, M.J.; Kaufman, D.A.; Perlstein, W.M. Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia 2009, 47, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Liotti, M.; Woldorff, M.G.; Perez, R.; Mayberg, H.S. An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia 2000, 38, 701–711. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, B.; Zhang, Q. Is consciousness necessary for conflict detection and conflict resolution? Behav. Brain. Res. 2013, 247, 110–116. [Google Scholar] [CrossRef]
- West, R.; Bowry, R.; McConville, C. Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology 2004, 41, 739–748. [Google Scholar] [CrossRef]
- Coderre, E.; Conklin, K.; van Heuven, W.J. Electrophysiological measures of conflict detection and resolution in the Stroop task. Brain. Res. 2011, 1413, 51–59. [Google Scholar] [CrossRef]
- Cui, H.; Chen, G.; Liu, X.; Shan, M.; Jia, Y. Stroop-interference effect in post-traumatic stress disorder. J. Integr. Neurosci. 2014, 13, 595–605. [Google Scholar] [CrossRef]
- West, R. Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia 2003, 41, 1122–1135. [Google Scholar] [CrossRef]
- Brockman, R.; Ciarrochi, J.; Parker, P.; Kashdan, T. Emotion regulation strategies in daily life: Mindfulness, cognitive reappraisal and emotion suppression. Cogn. Behav. Ther. 2017, 46, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.; Gullone, E.; Allen, N.B. Mindful emotion regulation: An integrative review. Clin. Psychol. Rev. 2009, 29, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Grundy, J.G.; Krishnamoorthy, S.; Shedden, J.M. Cognitive Control as a Function of Trait Mindfulness. J. Cognit. Enhanc. 2018, 2, 298–304. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Liu, X.; Rodriguez, M.A. The Five Facet Mindfulness Questionnaire: Psychometric. Properties of the Chinese Version. Mindfulness 2011, 2, 123–128. [Google Scholar] [CrossRef]
- McGrath, L.M.; Oates, J.M.; Dai, Y.G.; Dodd, H.F.; Waxler, J.; Clements, C.C.; Weill, S.; Hoffnagle, A.; Anderson, E.; MacRae, R.; et al. Attention Bias to Emotional Faces Varies by IQ and Anxiety in Williams Syndrome. J. Autism Dev. Disord. 2016, 46, 2174–2185. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Ni, W.; Xie, R.; Xu, J.; Liu, X. Gender Differences in the Difficulty in Disengaging from Threat among Children and Adolescents With Social Anxiety. Front. Psychol. 2017, 8, 419. [Google Scholar] [CrossRef] [Green Version]
- Batt, R.; Nettelbeck, T.; Cooper, C. Event related potential correlates of intelligence. Pers. Individ. Dif. 1999, 27, 639–658. [Google Scholar] [CrossRef]
- Bunford, N.; Kujawa, A.; Fitzgerald, K.D.; Fitzgerald, K.D.; Fitzgerald, K.D.; Koschmann, E.; Simpson, D.; Connolly, S.; Monk, C.S.; Monk, C.S. Neural Reactivity to Angry Faces Predicts Treatment Response in Pediatric Anxiety. J. Abnorm. Child Psychol. 2017, 45, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Key, A.P.F.; Stone, W.L. Same but different: 9-month-old infants at average and high risk for autism look at the same facial features but process them using different brain mechanisms. Autism Res. 2012, 5, 253–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.; Huang, Y.; Wang, Y.; Luo, Y. Revision of the Chinese Facial Affective Picture System. Chin. Ment. Health J. 2011, 25, 40–46. [Google Scholar]
- Wang, Y.; Zhou, L.; Luo, Y. The Pilot Establishment and Evaluation of Chinese Affective Words System. Chin. Ment. Health J. 2008, 22, 608–612. [Google Scholar]
- du Rocher, A.R.; Pickering, A. Trait anxiety, infrequent emotional conflict, and the emotional face Stroop task. Pers. Individ. Dif. 2017, 111, 157–162. [Google Scholar] [CrossRef]
- Solbakk, A.K.; Funderud, I.; Lovstad, M.; Endestad, T.; Meling, T.; Lindgren, M.; Knight, R.T.; Kramer, U.M. Impact of orbitofrontal lesions on electrophysiological signals in a stop signal task. J. Cogn. Neurosci. 2014, 26, 1528–1545. [Google Scholar] [CrossRef] [Green Version]
- Naylor, L.J.; Stanley, E.M.; Wicha, N.Y. Cognitive and electrophysiological correlates of the bilingual stroop effect. Front. Psychol. 2012, 3, 81. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, S.S.; Huang, C.J.; Wu, C.T.; Chang, Y.K.; Hung, T.M. Acute Exercise Facilitates the N450 Inhibition Marker and P3 Attention Marker during Stroop Test in Young and Older Adults. J. Clin. Med. 2018, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Larson, M.J.; Kaufman, D.A.; Perlstein, W.M. Conflict adaptation and cognitive control adjustments following traumatic brain injury. J. Int. Neuropsychol. Soc. 2009, 15, 927–937. [Google Scholar] [CrossRef]
- Davidson, R.; Dunne, J.; Eccles, J.; Engle, A.; Greenberg, M.; Jennings, P.; Jha, A.; Jinpa, T.; Lantieri, L.; Meyer, D.; et al. Contemplative Practices and Mental Training: Prospects for American Education. Child Dev. Perspect. 2012, 6, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Sanger, K.L.; Dorjee, D. Mindfulness training for adolescents: A neurodevelopmental perspective on investigating modifications in attention and emotion regulation using event-related brain potentials. Cogn. Affect. Behav. Neurosci. 2015, 15, 696–711. [Google Scholar] [CrossRef] [Green Version]
- Burra, N.; Coll, S.Y.; Barras, C.; Kerzel, D. Electrophysiological evidence for attentional capture by irrelevant angry facial expressions: Naturalistic faces. Neurosci. Lett. 2017, 637, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Nixon, E.; Liddle, P.F.; Nixon, N.L.; Liotti, M. On the interaction between sad mood and cognitive control: The effect of induced sadness on electrophysiological modulations underlying Stroop conflict processing. Int. J. Psychophysiol. 2013, 87, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, X.; Li, D.; Shangguan, F.; Lu, L.; Shi, J. Conflict control of emotional and non-emotional conflicts in preadolescent children. Biol. Psychol. 2019, 146, 107708. [Google Scholar] [CrossRef]
- Malinowski, P.; Moore, A.W.; Mead, B.R.; Gruber, T. Mindful Aging: The Effects of Regular Brief Mindfulness Practice on Electrophysiological Markers of Cognitive and Affective Processing in Older Adults. Mindfulness 2017, 8, 78–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, M.E.; Loughrey, D.; Lawlor, B.A.; Robertson, I.H.; Walsh, C.; Brennan, S. The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2014, 15, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Ren, G.; Kong, X.; Liu, J.; Qiu, J. Electrophysiological correlates related to the conflict adaptation effect in an emotional conflict task. Neurosci. Lett. 2015, 584, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Deng, X. Age-Related Differences in Emotional Conflict Control Between Adolescents and Adults: A Behavioral and ERP Study. Int. J. Psychol. 2021, 168, S150. [Google Scholar] [CrossRef]
- Szucs, D.; Soltesz, F. Functional definition of the N450 event-related brain potential marker of conflict processing a numerical stroop study. BMC Neurosci. 2012, 13, 35. [Google Scholar] [CrossRef] [Green Version]
- Larson, M.J.; Clawson, A.; Clayson, P.E.; South, M. Cognitive control and conflict adaptation similarities in children and adults. Dev. Neuropsychol. 2012, 37, 343–357. [Google Scholar] [CrossRef]
- Sheridan, M.; Kharitonova, M.; Martin, R.E.; Chatterjee, A.; Gabrieli, J.D. Neural substrates of the development of cognitive control in children ages 5–10 years. J. Cogn. Neurosci. 2014, 26, 1840–1850. [Google Scholar] [CrossRef]
- Isen, A.; Daubman, K.; Nowicki, G. Positive Affect Facilitates Creative Problem Solving. J. Pers. Soc. Psychol. 1987, 52, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
Component | Group | Congruent | Incongruent | t | d | p | 95%CI | |
---|---|---|---|---|---|---|---|---|
(M ± SD) | (M ± SD) | |||||||
N450 | LMSs | −3.79 ± 6.03 | −3.59 ± 5.77 | −0.31 | −0.03 | 0.757 | −1.51 | 1.12 |
HMSs | −0.09 ± 5.52 | −2.06 ± 6.15 | 2.35 | 0.34 | 0.033 | 0.18 | 3.75 | |
SP | LMSs | 4.50 ± 4.06 | 5.58 ± 4.30 | −1.87 | −0.26 | 0.077 | −2.29 | 0.13 |
HMSs | 6.72 ± 4.34 | 8.27 ± 4.40 | −2.99 | −0.35 | 0.009 | −2.66 | −0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Deng, X. Differences in Emotional Conflict Processing between High and Low Mindfulness Adolescents: An ERP Study. Int. J. Environ. Res. Public Health 2022, 19, 2891. https://doi.org/10.3390/ijerph19052891
Chen X, Deng X. Differences in Emotional Conflict Processing between High and Low Mindfulness Adolescents: An ERP Study. International Journal of Environmental Research and Public Health. 2022; 19(5):2891. https://doi.org/10.3390/ijerph19052891
Chicago/Turabian StyleChen, Xiaomin, and Xinmei Deng. 2022. "Differences in Emotional Conflict Processing between High and Low Mindfulness Adolescents: An ERP Study" International Journal of Environmental Research and Public Health 19, no. 5: 2891. https://doi.org/10.3390/ijerph19052891