Vertical Distribution and Controlling Factors Exploration of Sc, V, Co, Ni, Mo and Ba in Six Soil Profiles of The Mun River Basin, Northeast Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Data Treatment
2.4. Statistical Analysis
3. Results and Discussion
3.1. Contents of Heavy Metals in Soil
3.2. Assessment of Soil Heavy Metal Contamination
3.2.1. Enrichment of heavy metals
3.2.2. Contamination Assessment by Igeo Values in Topsoil.
3.3. Correlation Analysis Between Soil Heavy Metals and Soil Properties.
3.3.1. Characteristics of Inter-element Relationships
3.3.2. Influence of Soil Organic Matter on Heavy Metals
3.3.3. Influence of Soil pH on Heavy Metals
3.3.4. Influence of Soil Texture on Heavy Metals
3.4. Principal Component Analysis for Heavy Metals
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rajmohan, N.; Prathapar, S.A.; Jayaprakash, M.; Nagarajan, R. Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin. Environ. Monit. Assess. 2014, 186, 5411–5427. [Google Scholar] [CrossRef]
- Krishna, A.K.; Govil, P.K. Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environ. Monit. Assess. 2007, 124, 263–275. [Google Scholar] [CrossRef]
- Li, P.Z.; Lin, C.Y.; Cheng, H.G.; Duan, X.L.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotox. Environ. Safe. 2015, 113, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Han, G.L. Characteristics of major elements and heavy metals in atmospheric dust in Beijing, China. J. Geochem. Explor. 2017, 176, 114–119. [Google Scholar] [CrossRef]
- Qu, R.; Han, G.; Liu, M.; Li, X. The Mercury Behavior and Contamination in Soil Profiles in Mun River Basin, Northeast Thailand. Int. J. Environ. Res. Public Health 2019, 16, 4131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.P.; Feng, L.N. Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China. Atmos. Environ. 2012, 47, 58–65. [Google Scholar] [CrossRef]
- Gomez-Aracena, J.; Martin-Moreno, J.M.; Riemersma, R.A.; Bode, P.; Gutierrez-Bedmar, M.; Gorgojo, L.; Kark, J.D.; Garcia-Rodriguez, A.; Gomez-Gracia, E.; Kardinaal, A.F.M.; et al. Association between toenail scandium levels and risk of acute myocardial infarction in European men: The EURAMIC and Heavy Metals Study. Toxicol. Ind. Health 2002, 18, 353–360. [Google Scholar] [CrossRef]
- Zarcinas, B.A.; Pongsakul, P.; McLaughlin, M.J.; Cozens, G. Heavy metals in soils and crops in southeast Asia. 2. Thailand. Environ. Geochem. Health 2004, 26, 359–371. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 22. [Google Scholar]
- Clarkson, D.T.; Hanson, J.B. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 1980, 31, 239–298. [Google Scholar] [CrossRef]
- Osotsapar, Y. Micronutrients in crop production in Thailand; Food and Fertilizer Technology Center: Taipei, Taiwan, 2000. [Google Scholar]
- Tiaranan, N.; Pimsarn, S.; Claimon, S.; Punpruk, P. Correction of nutrient deficiencies of legumes in Thailand. Trop. Legume Improv. 1985, 8, 54–55. [Google Scholar]
- Zeng, F.R.; Ali, S.; Zhang, H.T.; Ouyang, Y.B.; Qiu, B.Y.; Wu, F.B.; Zhang, G.P. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Wijnhoud, J.D.; Konboon, Y.; Lefroy, R.D.B. Nutrient budgets: Sustainability assessment of rainfed lowland rice-based systems in northeast Thailand. Agric. Ecosyst. Environ. 2003, 100, 119–127. [Google Scholar] [CrossRef]
- Floch, P.; Molle, F. Irrigated agriculture and rural change in Northeast Thailand: Reflections on present developments. In Governing the Mekong: Engaging in the Politics of Knowledge; Daniel, R., Lebel, L., Manorom, K., Eds.; Strategic Information and Research Development Centre (SIRD): Petaling Jaya, Malaysia, 2013; pp. 185–198. [Google Scholar]
- Khunthasuvon, S.; Rajastasereekul, S.; Hanviriyapant, P.; Romyen, P.; Fukai, S.; Basnayake, J.; Skulkhu, E. Lowland rice improvement in northern and northeast Thailand 1. Effects of fertiliser application and irrigation. Field Crop. Res. 1998, 59, 99–108. [Google Scholar] [CrossRef]
- Nimnate, P.; Thitimakorn, T.; Choowong, M.; Hisada, K. Imaging and locating paleo-channels using geophysical data from meandering system of the Mun River, Khorat Plateau, Northeastern Thailand. Open Geosci. 2017, 9, 675–688. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Han, G.; Zhang, Q. Effects of agricultural abandonment on soil aggregation, soil organic carbon storage and stabilization: Results from observation in a small karst catchment, Southwest China. Agric. Ecosyst. Environ. 2020, 288, 106719. [Google Scholar] [CrossRef]
- Han, G.L.; Li, F.S.; Tang, Y. Variations in soil organic carbon contents and isotopic compositions under different land uses in a typical karst area in Southwest China. Geochem. J. 2015, 49, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Han, G.L.; Zhang, Q.; Song, Z.L. Variations and Indications of C-13(SOC) and N-15(SON) in Soil Profiles in Karst Critical Zone Observatory (CZO), Southwest China. Sustainability 2019, 11, 16. [Google Scholar]
- Han, G.L.; Li, F.S.; Tang, Y. Organic Matter Impact on Distribution of Rare Earth Elements in Soil Under Different Land Uses. Clean-Soil Air Water 2017, 45, 9. [Google Scholar] [CrossRef]
- Zoller, W.H.; Gladney, E.S.; Duce, R.A. Atmospheric concentrations and sources of trace metals at the South pole. Science 1974, 183, 198–200. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Wedepohl, K.H. The composition of the continental-crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Lu, X.W.; Wang, L.J.; Lei, K.; Huang, J.; Zhai, Y.X. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Balls, P.; Hull, S.; Miller, B.; Pirie, J.; Proctor, W. Trace metal in Scottish estuarine and coastal sediments. Mar. Pollut. Bull. 1997, 34, 42–50. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.L.; Wu, Q.X.; Tang, Y. Heavy Metals in Suspended Particulate Matter of the Zhujiang River, Southwest China: Contents, Sources, and Health Risks. Int. J. Environ. Res. Public Health 2019, 16, 1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.H.; Peng, B.; Wang, X.; Song, Z.L.; Zhou, D.X.; Wang, Q.; Qin, Z.L.; Tan, C.Y. Distribution, contamination and source identification of heavy metals in bed sediments from the lower reaches of the Xiangjiang River in Hunan province, China. Sci. Total Environ. 2019, 689, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Han, G.L.; Liu, M.; Liang, T. Spatial distribution and controlling factors of heavy metals in soils from Puding Karst Critical Zone Observatory, southwest China. Environ. Earth Sci. 2019, 78, 13. [Google Scholar] [CrossRef]
- Zeng, J.; Yue, F.-J.; Wang, Z.-J.; Wu, Q.; Qin, C.-Q.; Li, S.-L. Quantifying depression trapping effect on rainwater chemical composition during the rainy season in karst agricultural area, southwestern China. Atmos. Environ. 2019, 218, 116998. [Google Scholar] [CrossRef]
- Wong, S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Min, Y.S. Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ. Pollut. 2002, 119, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Chao, T.T.; Theobald, P.K. The significance of secondary iron and manganese oxides in geochemical exploration. Econ. Geol. 1976, 71, 1560–1569. [Google Scholar] [CrossRef]
- Xu, F.J.; Hu, B.Q.; Yuan, S.Q.; Zhao, Y.F.; Dou, Y.G.; Jiang, Z.Z.; Yin, X.B. Heavy metals in surface sediments of the continental shelf of the South Yellow Sea and East China Sea: Sources, distribution and contamination. Catena 2018, 160, 194–200. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.L. Riverine composition and estuarine geochemistry of particulate metals in China–Weathering features, anthropogenic impact and chemical fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
- Wong, C.S.C.; Li, X.D.; Thornton, I. Urban environmental geochemistry of trace metals. Environ. Pollut. 2006, 142, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortvedt, J.J. Heavy metal contaminants in inorganic and organic fertilizers. Fertil. Res. 1996, 43, 55–61. [Google Scholar] [CrossRef]
- Yan, X.; Luo, X.G. Heavy Metals in Sediment from Bei Shan River: Distribution, Relationship with Soil Characteristics and Multivariate Assessment of Contamination Sources. Bull. Environ. Contam. Toxicol. 2015, 95, 56–60. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements From Soil to Human; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Krishnamurti, G.S.R.; Huang, P.M.; Kozak, L.M. Sorption and desorption kinetics of cadmium from soil: Influence of phosphate. Soil Sci. 1999, 164, 888–898. [Google Scholar] [CrossRef]
- Lair, G.J.; Gerzabek, M.H.; Haberhauer, G. Sorption of heavy metals on organic and inorganic soil constituents. Environ. Chem. Lett. 2007, 5, 23–27. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Wichard, T.; Mishra, B.; Myneni, S.C.B.; Bellenger, J.P.; Kraepiel, A.M.L. Storage and bioavailability of molybdenum in soils increased by organic matter complexation. Nat. Geosci. 2009, 2, 625–629. [Google Scholar] [CrossRef]
- Muhlbachova, G.; Simon, T.; Pechova, M. The availability of Cd, Pb and Zn and their relationships with soil pH and microbial biomass in soils amended by natural clinoptilolite. Plant Soil Environ. 2005, 51, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Chuan, M.C.; Shu, G.Y.; Liu, J.C. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water Air Soil Pollut. 1996, 90, 543–556. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Wu, Q.; Tang, Y. Effects of agricultural alkaline substances on reducing the rainwater acidification: Insight from chemical compositions and calcium isotopes in a karst forests area. Agric. Ecosyst. Environ. 2020, 290, 106782. [Google Scholar] [CrossRef]
- Zhou, W.X.; Han, G.L.; Liu, M.; Li, X.Q. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. PeerJ 2019, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blake, L.; Goulding, K.W.T. Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant Soil 2002, 240, 235–251. [Google Scholar] [CrossRef]
- Dexter, A.R. Soil physical quality–Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 2004, 120, 201–214. [Google Scholar] [CrossRef]
- Damrongsiri, S.; Vassanadumrongdee, S.; Tanwattana, P. Heavy metal contamination characteristic of soil in WEEE (waste electrical and electronic equipment) dismantling community: A case study of Bangkok, Thailand. Environ. Sci. Pollut. Res. 2016, 23, 17026–17034. [Google Scholar] [CrossRef]
- Yin, Y.J.; Impellitteri, C.A.; You, S.J.; Allen, H.E. The importance of organic matter distribution and extract soil: Solution ratio on the desorption of heavy metals from soils. Sci. Total Environ. 2002, 287, 107–119. [Google Scholar] [CrossRef]
- Wang, X.S.; Qin, Y.; Chen, Y.K. Heavy meals in urban roadside soils, part 1: Effect of particle size fractions on heavy metals partitioning. Environ. Geol. 2006, 50, 1061–1066. [Google Scholar] [CrossRef]
- McBride, M.B.; Richards, B.K.; Steenhuis, T.; Spiers, G. Molybdenum uptake by forage crops grown on sewage sludge-amended soils in the field and greenhouse. J. Environ. Qual. 2000, 29, 848–854. [Google Scholar] [CrossRef]
- Gerdol, R.; Marchesini, R.; Iacumin, P.; Brancaleoni, L. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors. Chemosphere 2014, 108, 388–395. [Google Scholar] [CrossRef]
- Dahal, H. Factor analysis for soil test data: A methodological approach in environment friendly soil fertility management. J. Agric. Environ. 2007, 8, 8–19. [Google Scholar] [CrossRef]
- Han, G.L.; Song, Z.L.; Tang, Y.; Wu, Q.X.; Wang, Z.R. Ca and Sr isotope compositions of rainwater from Guiyang city, Southwest China: Implication for the sources of atmospheric aerosols and their seasonal variations. Atmos. Environ. 2019, 214, 10. [Google Scholar] [CrossRef]
Sampling Point | Land Cover | Depth (cm) | Field Description |
---|---|---|---|
T1 | Crop | 220 | Relatively uniform at all depths |
T2 | Oak forest | 50 | Compact soil; brown red |
T3 | Crop | 100 | 0–12 cm: Black root layer |
12–100 cm: Fine silt | |||
>100 cm: Iron manganese nodules | |||
T4 | Grass | 193 | 0–20 cm: Root layer |
20–112 cm: Fine silt | |||
112–180 cm: Weathering crust | |||
180–193 cm: Gray and green sand | |||
>193 cm: Bedrock | |||
T5 | Artificial building | 405 | 0–105 cm: Fine silt |
105–205 cm: Iron manganese nodules | |||
205–405 cm: Clay layer | |||
T6 | Forest | 50 | Fine silt |
Soil Profile | Item | Sc | V | Co | Ni | Mo | Ba |
---|---|---|---|---|---|---|---|
T1 | Min | 13.65 | 84.65 | 11.30 | 24.76 | 0.48 | 259.62 |
Max | 21.82 | 204.50 | 16.12 | 31.58 | 1.12 | 1659.68 | |
Mean (SD) | 17.95 (2.27) | 123.47 (39.68) | 13.70 (1.50) | 28.58 (1.97) | 0.75 (0.14) | 764.44 (561.23) | |
T2 | Min | 12.54 | 124.26 | 16.15 | 102.61 | 1.77 | 8.41 |
Max | 23.40 | 176.18 | 18.98 | 146.22 | 2.61 | 49.94 | |
Mean (SD) | 15.72 (4.39) | 146.64 (19.79) | 17.47 (1.28) | 128.15 (21.88) | 2.05 (0.36) | 20.62 (16.79) | |
T3 | Min | 1.76 | 1.26 | 0.49 | 2.05 | 0.17 | 12.57 |
Max | 6.76 | 105.87 | 5.15 | 7.14 | 1.42 | 324.63 | |
Mean (SD) | 3.26 (1.53) | 18.22 (32.50) | 1.45 (1.36) | 4.41 (1.66) | 0.77 (0.41) | 48.62 (97.07) | |
T4 | Min | 2.63 | 7.64 | 1.55 | 4.10 | 0.22 | 37.43 |
Max | 12.46 | 280.59 | 17.23 | 18.00 | 3.04 | 367.81 | |
Mean (SD) | 6.89 (3.52) | 59.75 (62.29) | 5.78 (3.89) | 10.72 (5.10) | 1.19 (0.97) | 188.94 (142.42) | |
T5 | Min | 4.83 | 12.72 | 0.55 | 2.53 | 0.19 | 2.75 |
Max | 13.88 | 437.43 | 22.55 | 58.55 | 1.76 | 534.58 | |
Mean (SD) | 10.45 (2.67) | 111.98 (107.71) | 10.05 (6.45) | 18.35 (15.25) | 0.65 (0.36) | 202.71 (171.92) | |
T6 | Min | 4.38 | 26.37 | 0.24 | 1.80 | 0.29 | 13.86 |
Max | 6.66 | 51.76 | 1.97 | 6.01 | 2.85 | 89.26 | |
Mean (SD) | 5.19 (0.89) | 34.75 (10.79) | 0.67 (0.74) | 2.98 (1.81) | 1.02 (1.05) | 65.37 (29.51) |
Co | Ni | Mo | Ba | Sc | V | SOC | pH | Clay | |
---|---|---|---|---|---|---|---|---|---|
Co | 1 | 0.652 ** | −0.063 | 0.419 ** | 0.763 ** | 0.558 ** | 0.298 ** | 0.451 ** | 0.739 ** |
Ni | 0.652 ** | 1 | 0.270 ** | 0.083 | 0.510 ** | 0.248 * | 0.407 ** | 0.003 | 0.530 ** |
Mo | −0.063 | 0.270 ** | 1 | −0.239 * | −0.155 | 0.115 | 0.329 ** | −0.223 * | −0.064 |
Ba | 0.419 ** | 0.083 | −0.239 * | 1 | 0.701 ** | 0.321 ** | 0.360 ** | 0.225 * | 0.575 ** |
Sc | 0.763 ** | 0.510 ** | −0.155 | 0.701 ** | 1 | 0.517 ** | 0.414 ** | 0.378 ** | 0.897 ** |
V | 0.558 ** | 0.248 * | 0.115 | 0.321 ** | 0.517 ** | 1 | 0.159 | 0.365 ** | 0.543 ** |
SOC | 0.298 ** | 0.407 ** | 0.329 ** | 0.360 ** | 0.414 ** | 0.159 | 1 | −0.298 ** | 0.433 ** |
pH | 0.451 ** | 0.003 | −0.223 * | 0.225 * | 0.378 ** | 0.365 ** | −0.298 ** | 1 | 0.357 ** |
Clay | 0.739 ** | 0.530 ** | −0.064 | 0.575 ** | 0.897 ** | 0.543 ** | 0.433 ** | 0.357 ** | 1 |
Element | Component | |
---|---|---|
PC1 | PC2 | |
Co | 0.90 | 0.11 |
Ni | 0.64 | 0.56 |
Mo | −0.05 | 0.85 |
Ba | 0.66 | −0.52 |
Sc | 0.93 | −0.17 |
V | 0.68 | 0.13 |
Eigenvalue | 2.98 | 1.36 |
Variance % | 49.70 | 22.71 |
Cumulative % | 49.70 | 72.41 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Han, G.; Liu, M.; Song, C.; Li, X.; Malem, F. Vertical Distribution and Controlling Factors Exploration of Sc, V, Co, Ni, Mo and Ba in Six Soil Profiles of The Mun River Basin, Northeast Thailand. Int. J. Environ. Res. Public Health 2020, 17, 1745. https://doi.org/10.3390/ijerph17051745
Zhou W, Han G, Liu M, Song C, Li X, Malem F. Vertical Distribution and Controlling Factors Exploration of Sc, V, Co, Ni, Mo and Ba in Six Soil Profiles of The Mun River Basin, Northeast Thailand. International Journal of Environmental Research and Public Health. 2020; 17(5):1745. https://doi.org/10.3390/ijerph17051745
Chicago/Turabian StyleZhou, Wenxiang, Guilin Han, Man Liu, Chao Song, Xiaoqiang Li, and Fairda Malem. 2020. "Vertical Distribution and Controlling Factors Exploration of Sc, V, Co, Ni, Mo and Ba in Six Soil Profiles of The Mun River Basin, Northeast Thailand" International Journal of Environmental Research and Public Health 17, no. 5: 1745. https://doi.org/10.3390/ijerph17051745