Potential Health Risks of Chemicals in Car Colorant Products
Abstract
1. Introduction
2. Methods
2.1. Sample Collection and Target Chemical Analysis
2.2. Toxicological Information
2.3. Exposure and Risk Assessment
2.3.1. Tier 1 Assessment
Cinh = Ca·abs·t·n/24
2.3.2. Tier 2 Assessment
Cinh = Ca·abs·t·n/24
3. Results
3.1. The Concentration of Target Chemicals in Car Colorant Products
3.2. Toxicological Information
3.3. Exposure Assessment and Risk Characterization
3.3.1. Tier 1 Assessment
3.3.2. Tier 2 Assessment
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Dodson, R.E.; Nishioka, M.; Standley, L.J.; Perovich, L.J.; Brody, J.G.; Rudel, R.A. Endocrine disruptors and asthma-associated chemicals in consumer products. Environ. Health Perspect. 2012, 120, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Ferret, P.-J.; Gomez-Berrada, M.-P.; Galonnier, M. Safety evaluation of cosmetic products dedicated to children under 3 years old. Toxicol. Lett. 2012, 211, S131. [Google Scholar] [CrossRef]
- Heisterberg, M.V.; Menné, T.; Johansen, J.D. Contact allergy to the 26 specific fragrance ingredients to be declared on cosmetic products in accordance with the EU cosmetics directive. Contact Dermat. 2011, 65, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, M.A.; Meuling, W.J.; Engel, R.; Coroama, M.C.; Renner, G.; Pape, W.; Nohynek, G.J. Consumer inhalation exposure to formaldehyde from use of personal care products/cosmetics. Regul. Toxicol. Pharmacol. 2012, 63, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Witorsch, R.J.; Thomas, J.A. Personal care products and endocrine disruption: A critical review of the literature. Crit. Rev. Toxicol. 2010, 40, 1–30. [Google Scholar] [CrossRef]
- Park, D.U.; Leem, J.; Lee, K.; Lim, H.; Choi, Y.; Ahn, J.; Lim, S.; Park, J.; Choi, K.; Lee, N.; et al. Exposure characteristics of familial cases of lung injury associated with the use of humidifier disinfectants. Environ. Health 2014, 13, 70. [Google Scholar] [CrossRef]
- Ministry of Environment Korea (KME). Official Notice; Ministry of Environment Korea (KME): Sejong, Korea, 2017; Available online: https://www.me.go.kr/home/web/board/read.do?pagerOffset=0&maxPageItems=10&maxIndexPages=10&searchKey=title&searchValue=%EA%B0%80%EC%8A%B5%EA%B8%B0&menuId=286&orgCd=&boardId=747490&boardMasterId=1&boardCategoryId=&decorator= (accessed on 26 February 2017).
- Korean National Law Information Center. Regulation of Safety and Labelling Standards for Risk-Concerned Products; (No. 2015-41); Ministry of Environment in Korea: Seoul, Korea, 2015.
- Korean National Law Information Center. Regulation of Safety and Labelling Standards for Risk-Concerned Products; (No. 2018-12); Ministry of Environment in Korea: Seoul, Korea, 2018.
- Biesterbos, J.W.; Dudzina, T.; Delmaar, C.J.; Bakker, M.I.; Russel, F.G.; von Goetz, N.; Scheepers, P.T.; Roeleveld, N. Usage patterns of personal care products: Important factors for exposure assessment. Food Chem. Toxicol. 2013, 55, 8–17. [Google Scholar] [CrossRef]
- Dimitroulopoulou, C.; Lucica, E.; Johnson, A.; Ashmore, M.R.; Sakellaris, I.; Stranger, M.; Goelen, E. EPHECT I: European household survey on domestic use of consumer products and development of worst-case scenarios for daily use. Sci. Total Environ. 2015, 536, 880–889. [Google Scholar] [CrossRef]
- Garcia-Hidalgo, E.; von Goetz, N.; Siegrist, M.; Hungerbühler, K. Use-patterns of personal care and household cleaning products in Switzerland. Food Chem. Toxicol. 2017, 99, 24–39. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.H.; Kim, T.; Yoon, H.; Jo, A.; Lee, B.; Lim, H.; Kim, P.; Seo, J. Determining exposure factors of anti-fogging, dye, disinfectant, repellent, and preservative products in Korea. Int. J. Environ. Res. Public Health 2018, 15, 232. [Google Scholar] [CrossRef]
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC). TR 107: Centre for Ecotoxicology and Toxicology of Chemicals. 2009. Available online: http://www.ecetoc.org/publication/tr-107-addendum-to-ecetoc-targeted-risk-assessment-technical-report-no-93/ (accessed on 26 February 2018).
- Netherlands National Institute for Public Health (RIVM). Consumer Exposure Models; Netherlands National Institute for Public Health (RIVM): Bilthofen, The Netherlands, 2016; Available online: https://www.rivm.nl/en/Documents_and_publications/Scientific/Reports/2016/december/ConsExpo_Web_Consumer_exposure_models_Model_documentation (accessed on 26 February 2018).
- Korean National Law Information Center. The Regulation of Risk-Concerned Products Risk Assessment; (No. 2017-55); National Institute of Environmental Research: Seoul, Korea, 2017.
- Liu, S.; Hammond, S.K.; Rojas-Cheatham, A. Concentrations and potential health risks of metals in lip products. Environ. Health Perspect. 2013, 121, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kannan, K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ. Sci. Technol. 2013, 47, 14442–14449. [Google Scholar] [CrossRef] [PubMed]
- Dimitroulopoulou, C.; Trantallidi, M.; Carrer, P.; Efthimiou, G.; Bartzis, J.G. EPHECT II: Exposure assessment to household consumer products. Sci. Total Environ. 2015, 536, 890–902. [Google Scholar] [CrossRef] [PubMed]
- Trantallidi, M.; Dimitroulopoulou, C.; Wolkoff, P.; Kephalopoulos, S.; Carrer, P. EPHECT III: Health risk assessment of exposure to household consumer products. Sci. Total Environ. 2015, 536, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, T.; Yoon, H.; Jo, A.; Lee, D.; Kim, P.; Seo, J. Health risk assessment of dermal and inhalation exposure to deodorants in Korea. Sci. Total Environ. 2018, 625, 1369–1379. [Google Scholar] [CrossRef]
- Lim, S.K.; Shin, H.S.; Yoon, K.S.; Kwack, S.J.; Um, Y.M.; Hyeon, J.H.; Kwak, H.M.; Kim, J.Y.; Kim, T.Y.; Kim, Y.J.; et al. Risk assessment of volatile organic compounds benzene, toluene, ethylbenzene, and xylene (BTEX) in consumer products. J. Toxicol. Environ. Health A 2014, 77, 1502–1521. [Google Scholar] [CrossRef]
- European Chemical Agency (ECHA). The Biocidal Active Substances; European Chemical Agency (ECHA): Helsinki, The Netherlands, 2018. Available online: https://echa.europa.eu/information-on-chemicals/biocidal-active-substances (accessed on 26 February 2018).
- National Institute of Environmental Research in Korea (KNIER). The Standard Operation of Procedure for Substances in Dye Product Group. 2017. Available online: http://library.me.go.kr/search/DetailView.ax?sid=1&cid=5622219 (accessed on 26 February 2018).
- European Chemical Agency (ECHA). Guidance on Information Requirements and Chemical Safety Assessment; Chapter R.8: Characterisation of Dose [Concentration]-Response for Human Health (Version 2.1); European Chemical Agency (ECHA): Helsinki, The Netherlands, 2012. Available online: http://www.ecetoc.org/publication/tr-107-addendum-to-ecetoc-targeted-risk-assessment-technical-report-no-93/ (accessed on 26 February 2018).
- Scientific Committee on Consumer Safety (SCCS). The SCCS’s Notes of Guidance for the Testing of Cosmetic Substances and Their Safety Evaluation (8th Revision). 2012. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_006.pdf (accessed on 26 February 2018).
- World Health Organization (WHO) and Inter-Organization Programme for the Sound Management of Chemicals (IPCS). Principles for Modelling Dose-Response for the Risk Assessment of Chemicals; World Health Organization: Geneva, Switzerland, 2009; Volume 239, Available online: http://apps.who.int/iris/bitstream/handle/10665/43940/9789241572392_eng.pdf?sequence=1&isAllowed=y (accessed on 26 February 2018).
- Delmaar, J.; Bremmer, H. The ConsExpo Spray Model—Modelling and Experimental Validation of the Inhalation Exposure of Consumers to Aerosols from Spray Cans and Trigger Sprays; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2009. [Google Scholar]
- Dai, H.; Jing, S.; Wang, H.; Ma, Y.; Li, L.; Song, W.; Kan, H. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci. Total Environ. 2017, 577, 73–83. [Google Scholar] [CrossRef]
- Durmusoglu, E.; Taspinar, F.; Karademir, A. Health risk assessment of BTEX emissions in the landfill environment. J. Hazard. Mater. 2010, 176, 870–877. [Google Scholar] [CrossRef]
- Kanjanasiranot, N.; Prueksasit, T.; Morknoy, D. Inhalation exposure and health risk levels to BTEX and carbonyl compounds of traffic policeman working in the inner city of Bangkok, Thailand. Atmos. Environ. 2017, 152, 111–120. [Google Scholar] [CrossRef]
- Park, S.A.; Gwak, S.; Choi, S. Assessment of occupational symptoms and chemical exposures for nail salon technicians in Daegu City, Korea. J. Prev. Med. Public Health 2014, 47, 169–176. [Google Scholar] [CrossRef]
- Sarigiannis, D.A.; Karakitsios, S.P.; Gotti, A.; Liakos, I.L.; Katsoyiannis, A. Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ. Int. 2011, 37, 743–765. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.P.; Punia, M.; Singh, D.; Kumar, K.; Jain, V.K. Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ. Sci. Pollut. Res. Int. 2014, 21, 2240–2248. [Google Scholar] [CrossRef]
- Schnatter, A.R.; Glass, D.C.; Tang, G.; Irons, R.D.; Rushton, L. Myelodysplastic syndrome and benzene exposure among petroleum workers: An international pooled analysis. J. Natl Cancer Inst. 2012, 104, 1724–1737. [Google Scholar] [CrossRef]
- Tunsaringkarn, T.; Siriwong, W.; Rungsiyothin, A.; Nopparatundit, S. Occupational exposure of gasoline station workers to BTEX compounds in Bangkok, Thailand. Int. J. Occup. Environ. Med. 2012, 3, 117–125. [Google Scholar]
- Bushnell, P.J.; Oshiro, W.M.; Samsam, T.E.; Benignus, V.A.; Krantz, Q.T.; Kenyon, E.M. A dosimetric analysis of the acute behavioral effects of inhaled toluene in rats. Toxicol. Sci. 2007, 99, 181–189. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). Agents Classified by the IARC Monographs; International Agency for Research on Cancer: Lyon, France, 2018; Volumes 1–120, Available online: http://monographs.iarc.fr/ENG/Classification/ (accessed on 26 February 2018).
- International Programme on Chemical Safety (IPCS). Inter-Organization Programme for the Sound Management of Chemicals. In Principles of Characterizing and Applying Human Exposure Models; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Ban, H.; Park, J.Y.; Lee, D.; Lee, K. Impact of exposure factor selection on deterministic consumer exposure assessment. Regul. Toxicol. Pharmacol. 2018, 94, 240–244. [Google Scholar] [CrossRef]
- Van Engelen, J.G.; Heinemeyer, G.; Rodriguez, C. Consumer exposure scenarios; development, challenges and possible solution. J. Expo. Sci. Environ. Epidemiol. 2007, 17, S26–S33. [Google Scholar] [CrossRef]
- German Federal Environmental Agency (UBA). Guidance Values for the Concentration of Specific Substances in Indoor Air; German Federal Environmental Agency (UBA): Dessau-Roßlau, Germany, 2018. [Google Scholar]
- Cowan-Ellsberry, C.E.; Robison, S.H. Refining aggregate exposure: Example using parabens. Regul. Toxicol. Pharmacol. 2009, 55, 321–329. [Google Scholar] [CrossRef]
- Shin, H.M.; McKone, T.E.; Bennett, D.H. Model framework for integrating multiple exposure pathways to chemicals in household cleaning products. Indoor Air 2017, 27, 829–839. [Google Scholar] [CrossRef]
Chemicals | Pre-Treatment Method | Analytical Method * | Limit of Quantitation (% w/w) |
---|---|---|---|
Methyl ethyl ketone, Ethyl acetate, Isobutanol, Heptane, Methyl isobutyl ketone, Toluene, Butyl acetate/N-butyl acetate, Ethylbenzene, Xylene, Propylene glycol methyl ether acetate, 2-Butoxyethanol, Cyclohexanone, 2-Butoxyethanol acetate | Solvent extraction | GC/MS | 0.001 |
Acetone, Hexane | Solvent extraction | GC/MS | 0.005 |
Exposure Factors | Percentiles | |
---|---|---|
75th | 95th | |
Frequency of use (events/6 months) | 2.00 a | 3.00 a |
Duration of use (min/use) | 20.00 a | 50.00 a |
Amount of use per application (g/use) | 13.60 a | 27.21 a |
Chemical | Detection Rate (%) | Concentration Range (%) |
---|---|---|
Acetone | 61.5 | 0.011 (0.006, 3.088) |
Hexane | 38.5 | 0.486 (0.024, 0.932) |
Methyl ethyl ketone | 61.5 | 1.373 (0.031, 4.102) |
Ethyl acetate | 38.5 | 0.833 (0.002, 4.991) |
Isobutanol | 46.2 | 0.129 (0.022, 1.207) |
Heptane | 53.8 | 0.161 (0.003, 2.466) |
Methyl isobutyl ketone | 61.5 | 0.053 (0.002, 2.452) |
Toluene | 100.0 | 10.804 (0.055, 52.524) |
Butyl acetate; N-butyl acetate | 69.2 | 17.676 (0.017, 27.457) |
Ethylbenzene | 100.0 | 2.722 (1.090, 24.381) |
Xylene | 100.0 | 4.880 (0.853, 15.492) |
Propylene glycol methyl ether acetate | 62.9 | 1.868 (0.205, 11.410) |
2-Butoxyethanol | 38.5 | 2.352 (1.391, 3.597) |
Cyclohexanone | 23.1 | 0.015 (0.002, 0.726) |
2-Butoxyethanol acetate | 23.1 | 0.012 (0.004, 0.983) |
Chemical | Toxicity Value (NOAEC, NOEC, LOAEC; mg/m3) | End Point | Adjustment Factors (Exposure Time) | Assessment Factors (Exposure Duration) | Reference Toxicological Value (mg/m3) |
---|---|---|---|---|---|
Acetone c | LOAEC = 2952 | Neurological effects | - | LOAEC to NOAEC: 3 | 984.7 |
Hexane b | LOAEC = 10,574 | Nasal lesions | 0.50 | Sub-chronic to chronic: 2 LOAEC to NOAEC: 3 | 881.2 |
Methyl ethyl ketone a | - | Developmental toxicity (skeletal variations) | - | - | 5.0 |
Ethyl acetate b | NOAEC = 1280 | Respiratory irritant effects | 0.18 | Sub-chronic to chronic: 2 | 114.3 |
Isobutanol b | NOAEC = 7500 | No effects observed | 0.18 | Sub-chronic to chronic: 2 | 669.6 |
Heptane b | NOAEC = 12,470 | Body weight changes | 0.50 | Sub-chronic to chronic: 2 | 3117.5 |
Methyl isobutyl ketone a | - | Reduced fetal body weight, skeletal variations, and increased fetal death | - | - | 3.0 |
Toluene a | - | Neurological effects | - | - | 5.0 |
Butyl acetate; N-butyl acetate b | NOAEC = 2400 | Organ-specific toxicity | 0.18 | Sub-chronic to chronic:2 | 214.3 |
Ethylbenzene a | - | Developmental toxicity | - | - | 1.0 |
Xylene a | - | Impaired motor coordination | - | - | 0.1 |
Propylene glycol methyl ether acetate b | NOEC = 1621 | Increase in tumor incidence | 0.18 | Chronic to chronic: 1 | 289.6 |
2-Butoxyethanol a | - | Hemosiderin deposition in the liver | - | - | 1.6 |
Cyclohexanone | N/A | N/A | N/A | N/A | N/A |
2-Butoxyethanol acetate | N/A | N/A | N/A | N/A | N/A |
Chemical | Target MOE/HQ | |
---|---|---|
Tier 1 Assessment | Tier 2 Assessment | |
Acetone | 100 Intra-species: 10 Screening factor 10 | 10 Intra-species: 10 |
Hexane | 250 Intra-species: 10 Inter-species: 2.5, Screening factor 10 | 250 Intra-species: 10 Inter-species: 2.5 |
Methyl ethyl ketone | 0.1 * | 1 * |
Ethyl acetate | 250 Intra-species: 10 Inter-species: 2.5, Screening factor 10 | 25 Intra-species: 10 Inter-species: 2.5 |
Isobutanol | 250 Intra-species: 10 Inter-species: 2.5, Screening factor 10 | 25 Intra-species: 10 Inter-species: 2.5 |
Heptane | 250 Intra-species: 10 Inter-species: 2.5, Screening factor 10 | 25 Intra-species: 10 Inter-species: 2.5 |
Methyl isobutyl ketone | 0.1 * | 1 * |
Toluene | 0.1 * | 1 * |
Butyl acetate; N-butyl acetate | 250 Intra-species: 10 Inter-species: 2.5, Screening factor 10 | 25 Intra-species: 10 Inter-species: 2.5 |
Ethylbenzene | 0.1 * | 1 * |
Xylene | 0.1 * | 1 * |
Propylene glycol methyl ether acetate | 250 Intra-species: 10 Inter-species: 2.5, Screening factor 10 | 25 Intra-species: 10 Inter-species: 2.5 |
2-Butoxyethanol | 0.1 * | 1 * |
Cyclohexanone | N/A | N/A |
2-Butoxyethanol acetate | N/A | N/A |
Chemical | Exposure Concentration (mg/m3) | MOE or HQ a | Health Risk (O = yes, X = no) |
---|---|---|---|
Acetone | 0.05 | 18,830,375 * | X |
Hexane | 0.02 | 55,864,263 * | X |
Methyl ethyl ketone | 0.07 | 0.01 ** | X |
Ethyl acetate | 0.08 | 1,352,490 * | X |
Isobutanol | 0.02 | 32,759,583 * | X |
Heptane | 0.04 | 74,658,040 * | X |
Methyl isobutyl ketone | 0.07 | 0.01 ** | X |
Toluene | 0.89 | 0.2 ** | O |
Butyl acetate; N-butyl acetate | 0.46 | 460,935 * | X |
Ethylbenzene | 0.41 | 0.4 ** | O |
Xylene | 0.26 | 2.6 ** | O |
Propylene glycol methyl ether acetate | 0.19 | 1,498,850 * | X |
2-Butoxyethanol | 0.44 | 0.3 ** | O |
Cyclohexanone | N/A | N/A | N/A |
2-Butoxyethanol acetate | N/A | N/A | N/A |
Chemical | Exposure Concentration (mg/m3) | HQ a | Health Risk (O = yes, X = no) |
---|---|---|---|
Toluene | 0.13 | 0.03 | X |
Ethylbenzene | 0.06 | 0.06 | X |
Xylene | 0.04 | 0.38 | X |
2-Butoxyethanol | 0.01 | 0.01 | X |
Chemical | International Indoor Guide Values * | Current Study | |
---|---|---|---|
II | I | ||
Toluene | 3.0 mg/m3 | 0.3 mg/m3 | 0.13 mg/m3 |
Ethylbenzene | 2.0 mg/m3 | 0.2 mg/m3 | 0.06 mg/m3 |
Xylene | 0.8 mg/m3 | 0.1 mg/m3 | 0.04 mg/m3 |
2-Butoxyethanol | 1.0 mg/m3 | 0.1 mg/m3 | 0.01 mg/m3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Kim, J.-h.; Hwang, M.; Lim, H.; Seok, K. Potential Health Risks of Chemicals in Car Colorant Products. Int. J. Environ. Res. Public Health 2019, 16, 913. https://doi.org/10.3390/ijerph16060913
Lee D, Kim J-h, Hwang M, Lim H, Seok K. Potential Health Risks of Chemicals in Car Colorant Products. International Journal of Environmental Research and Public Health. 2019; 16(6):913. https://doi.org/10.3390/ijerph16060913
Chicago/Turabian StyleLee, Daeyeop, Joo-hyon Kim, Moonyoung Hwang, Hyunwoo Lim, and Kwangseol Seok. 2019. "Potential Health Risks of Chemicals in Car Colorant Products" International Journal of Environmental Research and Public Health 16, no. 6: 913. https://doi.org/10.3390/ijerph16060913
APA StyleLee, D., Kim, J.-h., Hwang, M., Lim, H., & Seok, K. (2019). Potential Health Risks of Chemicals in Car Colorant Products. International Journal of Environmental Research and Public Health, 16(6), 913. https://doi.org/10.3390/ijerph16060913