The Effects of Small-Volume Liposuction Surgery of Subcutaneous Adipose Tissue in the Gluteal-Femoral Region on Selected Biochemical Parameters
Abstract
1. Introduction
2. Material and Methods
2.1. Blood Sampling and Biochemical Analysis.
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Fodor, P.B. Suction mammaplasty: The use of suction lipectomy to reduce large breasts. Plast. Reconstr. Surg. 2000, 105, 2608–2610. [Google Scholar] [CrossRef] [PubMed]
- Illouz, Y.G. Body contouring by lipolysis: A 5-year experience with over 3000 cases. Plast. Reconstr. Surg. 1983, 72, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Reed, L.S. Lipoplasty of the calves and ankles. Clin. Plast. Surg. 1989, 16, 365–368. [Google Scholar]
- Levine, S.; Smolak, K.M. Body image development in adolescence. In Body Image: A Handbook of Theory, Research, and Clinical Practice; Cash, T.F., Pruzinsky, P.T., Eds.; The Guilford Press: New York, NY, USA; London, UK, 2004; pp. 77–82. [Google Scholar]
- Kershaw, E.; Flier, J. Adiposetissue as anendocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Fontana, L.; Young, V.L.; Coggan, A.R.; Kilo, C.; Patterson, B.W.; Mohammed, B.S. Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N. Engl. J. Med. 2004, 350, 2549–2557. [Google Scholar] [CrossRef]
- Hong, Y.G.; Kim, H.T.; Seo, S.W.; Chang, C.H.; Rhee, E.J.; Lee, W.Y. Impact of large volume liposuction on serum lipids in Orientals: A pilot study. Aesthet. Plast. Surg. 2006, 30, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Busetto, F.; Bassetto, M.; Zocchi, M.; Zuliani, F.; Nolli, M.L.; Pigozzo, S.; Coin, A.; Mazza, M.; Sergi, G.; Mazzoleni, F.; et al. The effects of the surgical removal of subcutaneous adipose tissue on energy expenditure and adipocytokine concentrations in obese women. Nutr. Metab. Cardiovasc. Dis. 2008, 18920, 112–120. [Google Scholar] [CrossRef]
- Ybarra, J.; Blanco-Vaca, F.; Fernández, S.; Castellví, A.; Bonet, R.; Palomer, X.; Ordóñez-Llanos, J.; Trius, A.; Vila-Rovira, R. The effects of liposuction removal of subcutaneous abdominal fat on lipid metabolism are independent of insulin sensitivity in normal overweight individuals. Obes. Surg. 2008, 18, 408–414. [Google Scholar] [CrossRef]
- Rizzo, M.R.; Paolisso, G.; Grella, R.; Barbieri, M.; Grella, E.; Ragno, E.; Grella, R.; Nicoletti, G.; D’Andrea, F. Is dermolipectomy effective in improving insulin action and lowering inflammatory markers in obese women? Clin. Endocrinol. (Oxf.) 2005, 63, 253–258. [Google Scholar] [CrossRef]
- Gonzalez-Ortiz, M.; Robles-Cervantes, J.A.; Cardenas-Camarena, L.; Bustos-Saldana, R.; Martinez-Abundis, E. The effects of surgically removing subcutaneous fat on the metabolic profile and insulin sensitivity in obese women after large-volume liposuction treatment. Horm. Metab. Res. 2002, 34, 446–449. [Google Scholar] [CrossRef]
- Ciach, E.; Bobilewicz, D.; Kmin, E. Cholesterol LDL-direct measurements and calculated from Friedewald formula. J. Lab. Diagn. 2011, 47, 419–423. [Google Scholar]
- Szulińska, M.; Kujawska-Łuczak, M.; Bogdański, P.; Pupek-Muszalik, D. Insulin sensitivity M ratio and IRI/G ratio in patients with hypertension and obesity. Arter. Hypertention 2010, 14, 142–150. [Google Scholar]
- Hsieh, C.J.; Wang, P.W.; Chen, T.Y. The relationship between regional abdominal fat distribution and both insulin resistance and subclinical chronic inflammation in non-diabetic adults. Diabetol. Metab. Syndr. 2014, 6, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Pomara, F.; Thomas, E.; Paoli, A.; Battaglia, G.; Petrucci, M.; Proia, P.; Bellafiore, M.; Palma, A. Type 2 diabetes family histories, body composition and fasting glucose levels: A crosssection analysis in healthy sedentary male and female. Iran. J. Public Health 2013, 42, 681–690. [Google Scholar] [PubMed]
- Wahrenberg, H.; Lindqvist, F.; Arner, P. Mechanisms underlying regional differences in lipolysis in human adipose tissue. J. Clin. Investig. 1989, 84, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Wajchenberg, B.L. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocr. Rev. 2000, 21, 697–738. [Google Scholar] [CrossRef] [PubMed]
- Berman, D.M.; Nicklas, B.J.; Rogus, E.M.; Dennis, K.E.; Goldberg, A.P. Regional differences in adrenoceptor binding and fatcell lipolysis in obese, postmenopausal women. Metabolism 1998, 47, 467–473. [Google Scholar] [CrossRef]
- Thomas, T.; Gori, F.; Khosla, S.; Jensen, M.D.; Burguera, B.; Riggs, B.L. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999, 140, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Cornish, J.; Callon, K.E.; Bava, U.; Lin, C.; Naot, D.; Hill, B.L.; Grey, A.B.; Broom, N.; Myers, D.E.; Nicholson, G.C.; et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J. Endocrinol. 2002, 175, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; de Vittoris, R.; David, V.; Moraes, R.; Bégeot, M.; Lafage-Proust, M.H.; Alexandre, C.; Vico, L.; Thomas, T. Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats. Endocrinology 2005, 146, 3652–3659. [Google Scholar] [CrossRef]
- Elefteriou, F.; Ahn, J.D.; Takeda, S.; Starbuck, M.; Yang, X.; Liu, X.; Kondo, H.; Richards, W.G.; Bannon, T.W.; Noda, M.; et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005, 434, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Jürimäe, J.; Rembel, K.; Jürimäe, T.; Rehand, M. Adiponectin is associated with bone mineral density in perimenopausal women. Horm. Metab. Res. 2005, 37, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Thommesen, L.; Stunes, A.K.; Monjo, M.; Grøsvik, K.; Tamburstuen, M.V.; Kjøbli, E.; Lyngstadaas, S.P.; Reseland, J.E.; Syversen, U. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J. Cell. Biochem. 2006, 99, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.W.; Lee, W.Y.; Rhee, E.J.; Baek, K.H.; Yoon, K.H.; Kang, M.I.; Yun, E.J.; Park, C.Y.; Ihm, S.H.; Choi, M.G.; et al. The relationship between serum resistin, leptin, adiponectin, ghrelin levels and bone mineral density in middle-aged men. Clin. Endocrinol. 2005, 63, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Bonora, E.; Targher, G.; Alberiche, M.; Bonadonna, R.C.; Saggiani, F.; Zenere, M.B.; Monauni, T.; Muggeo, M. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin insulin sensitivity: Studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care 2000, 23, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Emoto, M.; Nishizawa, Y. HOMA index to assess insulin resistance in renal failure patients. Nephron 2001, 89, 348–349. [Google Scholar] [CrossRef] [PubMed]
- Douchi, T.; Yamamoto, S.; Oki, T.; Maruta, K.; Kuwahata, R.; Nagata, Y. Relationship between body fat distribution and bone mineral density in premenopausal Japanese women. Obstet. Gynecol. 2000, 95, 722–725. [Google Scholar] [PubMed]
- Zhao, L.J.; Liu, Y.J.; Liu, P.Y.; Hamilton, J.; Recker, R.; Deng, H.W. Relationship of obesity with osteoporosis. J. Clin. Endocrinol. Metab. 2007, 92, 1640–1646. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.H.; Venners, S.A.; Herwedow, H.A.; Feng, Y.; Niu, T.; Li, Z.; Laird, N.; Brain, J.D.; Cummings, S.R.; Bouxsein, M.L.; et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am. J. Clin. Nutr. 2006, 83, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Holecki, M.; Zahorska-Markiewicz, B.; Janowska, J.; Janowska, J.; Nieszporek, T.; Wojaczynska-Stanek, K.; Żak-Gołab, A.; Wiecek, A. The influence of weight loss on serum osteoprotegerin concentration in obese perimenopausal women. Obesity 2007, 15, 1925–1929. [Google Scholar] [CrossRef] [PubMed]
- Fuller, K.; Lean, J.M.; Bayley, K.E.; Wani, M.R.; Chamber, T.J. A role for TGF-b1 in osteoclast differentiation andsurvival. J. Cell Sci. 2000, 113, 245–253. [Google Scholar]
- Yan, T.; Riggs, B.L.; Boyle, W.J.; Khosla, S. Regulation of Osteoclastogenesis and RANK Expressionby TGF-b1. J. Cell. Biochem. 2001, 83, 320–325. [Google Scholar] [CrossRef] [PubMed]
- Weitzmann, M.N.; Pacifici, R. The role of T lymphocytes in bone metabolism. Immunol. Rev. 2005, 208, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Bae, S.C. TGF-b-dependent cell growth arrest and apoptosis. J. Biochem. Mol. Biol. 2002, 35, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Moustakas, A.; Pardali, K.; Gaal, A.; Heldin, C.H. Mechanisms of TGF-b signaling in regulation of cell growth and differentiation. Immunol. Lett. 2002, 82, 85–91. [Google Scholar] [CrossRef]
- Feinberg, M.W.; Jain, M.K. Role of transforming growth factor-b1/S mads in regulating vascular inflammation and atherogenesis. Panminerva Med. 2005, 47, 169–186. [Google Scholar] [PubMed]
- Valcourt, U.; Kowanetz, M.; Niimi, H.; Heldin, C.H.; Moustakas, A. TGF-b and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol. Biol. Cell 2005, 16, 1987–2002. [Google Scholar] [CrossRef]
- Rotter, V.; Nagaev, I.; Smith, U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J. Biol. Chem. 2003, 278, 4577–4584. [Google Scholar] [CrossRef]
- Prins, J.B. Adipose tissue as an endocrine organ. Best Pract. Res. Clin. Endocrinol. Metab. 2002, 16, 639–651. [Google Scholar] [CrossRef]
- Rodan, G.A. Introduction to bone biology. Bone 1992, 13, 3–6. [Google Scholar] [CrossRef]
- Richards, C.D.; Langdon, C.; Deschamps, P.; Pennica, D.; Shaughnessy, S.G. Stimulation of osteoclast differentiation in vitro by mouse oncostatin M, leukaemia inhibitory factor, cardiotrophin-1 and interleukin 6: Synergy with dexamethasone. Cytokine 2000, 12, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Franchimont, N.; Wertz, S.; Malaise, M. Interleukin-6: An osteotropic factor influencing bone formation? Bone 2005, 37, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Hajer, G.R.; van Haeften, T.W.; Visseren, F.L. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 2008, 29, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh-Attar, M.J.; Golpaie, A.; Janani, L.; Derakhshanian, H. Effect of Weight Reduction Following Bariatric Surgery on Serum Visfatin and Adiponectin Levels in Morbidly Obese Subjects. Obes. Facts 2013, 6, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Yazagi Solis, M.Y.; Artioli, G.G.; Montag, E.; Painelli, V.; Saito, F.L.; Lima, F.R.; Roschel, H.; Gualano, B.; Lancha, A.H., Jr.; Benatti, F.B. The Liposuction-Induced Effects on Adiponectin and Selected Cytokines Are Not Affected by Exercise Training in Women. Int. J. Endocrinol. 2014, 2014, 315382. [Google Scholar] [CrossRef] [PubMed]
Parameter | M | ±Sd |
---|---|---|
Chronological age [years] | 40.7 | 13.67 |
Body height [cm] | 171 | 7.87 |
Lipoaspirate volume [L] | 3.35 | 994 |
WBC [109/L] | 9.6 | 1.03 |
LYM [%] | 26.38 | 5.52 |
MON [%] | 5.76 | 1.57 |
NEU [%] | 63.62 | 5.25 |
EOS [%] | 3.34 | 1.95 |
BASO [%] | 0.96 | 0.1 |
RBC [1012/L] | 4.54 | 0,22 |
HGB [mmol/L] | 13.7 | 0.5 |
HCT [mmol/L] | 41.69 | 1.12 |
MCV [fl] | 90.91 | 3.72 |
MCH [fmol] | 29.98 | 1.15 |
MCHC [mmol/L] | 33.01 | 0.7 |
PLT [109/L] | 334.6 | 23.59 |
ESR [mm/h] | 3.9 | 1.2 |
Parameter | Before Liposuction | After Liposuction | Wilcoxon Test p Value | ||
---|---|---|---|---|---|
Median | Q25 Q75 | Median | Q25 Q75 | ||
Waist circumference [cm] | 84.0 | 80.0 88.0 | 82.0 | 78.0 86.0 | ** ↧ p = 0.00136 |
Hip circumference [cm] | 96.0 | 93.0 98.0 | 93.0 | 90.0 98.0 | **↧ p = 0.00335 |
WHR | 0.86 | 0.84 0.90 | 0.84 | 0.82 0.89 | **↧ p = 0.00765 |
Body weight [kg] | 68.0 | 63.0 73.0 | 64.0 | 60.0 70.5 | **↧ p = 0.00145 |
BMI | 25.9 | 23.1 26.0 | 24.5 | 22.0 25.0 | **↧ p = 0.00765 |
PBF% | 28.1 | 26.3 29.2 | 27.9 | 24.2 28.0 | **↧ p = 0.00147 |
FAT [kg] | 20.1 | 18.9 26.6 | 18.8 | 18.1 24.1 | **↧ p = 0.00135 |
SFM [kg] | 18.8 | 16.3 21.5 | 17.3 | 15.0 19.5 | **↧ p = 0.00142 |
VFM [kg] | 2.3 | 1.8 3.1 | 2.2 | 1.5 2.8 | **↧ p = 0.00152 |
Parameter | Before Liposuction | After Liposuction | |||
---|---|---|---|---|---|
Median | Q25 Q75 | Median | Q25 Q75 | Wilcoxon Test p Value | |
Biochemical parameters | |||||
Albumin [g/L] | 28.4 | 26.7 29.9 | 28.6 | 28.2 33.2 | p = 0.05821 |
Total protein [g/L] | 36.5 | 30.6 37.7 | 38.7 | 34.1 39.8 | p = 0.06217 |
Glucose [mmol/L] | 4.6 | 3.4 4.2 | 4.7 | 3.5 4.3 | p = 0.09391 |
Uric acid [mmol/L] | 0.14 | 0.12 0.18 | 0.16 | 0.14 0.21 | ** ↥ p = 0.00131 |
Lipid profile | |||||
TCh [mmol/L] | 4.39 | 3.95 5.09 | 4.15 | 3.99 4.74 | * ↧ p = 0.0277 |
HDL [mmol/L] | 1.10 | 1.04 1.18 | 1.04 | 0.99 1.14 | p = 0.13662 |
LDL [mmol/L] | 3.31 | 2.97 3.43 | 2.99 | 2.93 3.89 | p = 0.80632 |
TG [mmol/L] | 1.55 | 1.44 1.62 | 1.44 | 1.37 1.62 | p = 0.43271 |
ApoA [µmol/L] | 81.61 | 69.89 83.64 | 79.71 | 64.14 89.61 | p = 0.14182 |
ApoB [µmol/L] | 1.65 | 1.58 1.71 | 1.61 | 1.54 1.71 | p = 0.05798 |
ApoE [mmol/L] | 1.43 | 1.34 1.65 | 1.52 | 1.34 1.60 | p = 0.38255 |
Adipocytokines | |||||
Adiponectin [µg/mL] | 15.20 | 10.35 16.36 | 13.56 | 9.16 15.58 | *↧ p = 0.03741 |
Leptin [µg/mL] | 5.51 | 4.32 5.67 | 4.63 | 5.34 7.30 | **↧ p = 0.01074 |
Resistin [ng/mL] | 26.79 | 19.10 27.98 | 25.81 | 19.37 27.10 | *↧ p = 0.03304 |
Visfatin [ng/mL] | 4.68 | 3.81 4.84 | 4.43 | 3.21 4.64 | p = 0.31084 |
Insulin resistance markers | |||||
Insulin [pmol/L] | 75.19 | 58.55 84.83 | 62.55 | 55.74 72.58 | **↧ p = 0.00121 |
HOMA-IR | 3.31 | 2.18 4.78 | 2.02 | 1.92 3.93 | **↧ p = 0.01590 |
Pro- and anti-inflammatory markers | |||||
Hs-CRP [nmol/L] | 0.81 | 0.64 1.51 | 0.92 | 0.52 1.68 | p = 0.22122 |
IL-1β [pg/mL] | 7.99 | 7.80 8.24 | 7.35 | 6.19 7.71 | p = 0.13256 |
IL-2 [pg/mL] | 20.04 | 15.53 26.50 | 22.03 | 22.03 28.00 | *↥ p = 0.02770 |
IL-10 [pg/mL] | 13.42 | 12.98 14.17 | 14.08 | 13.00 14.99 | p = 0.27893 |
IL-6 [pg/mL] | 14.20 | 12.63 17.75 | 15.00 | 12.94 21.30 | *↥ p = 0.03924 |
TNF-β [pg/mL] | 214.00 | 198.23 273.10 | 212.90 | 202.10 263.00 | p = 0.46361 |
TNF-α[pg/mL] | 213.40 | 198.23 256.20 | 224.00 | 189.04 244.01 | p = 0.80633 |
Bone turnover markers | |||||
TGF-β1 [ng/mL] | 7.20 | 6.43 9.01 | 7.67 | 6.41 9.62 | p = 0.13279 |
OPG [pg/mL] | 133.3 | 130.6 135.5 | 135.2 | 125.6 136.2 | p = 0.72675 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lubkowska, A.; Chudecka, M. The Effects of Small-Volume Liposuction Surgery of Subcutaneous Adipose Tissue in the Gluteal-Femoral Region on Selected Biochemical Parameters. Int. J. Environ. Res. Public Health 2019, 16, 3298. https://doi.org/10.3390/ijerph16183298
Lubkowska A, Chudecka M. The Effects of Small-Volume Liposuction Surgery of Subcutaneous Adipose Tissue in the Gluteal-Femoral Region on Selected Biochemical Parameters. International Journal of Environmental Research and Public Health. 2019; 16(18):3298. https://doi.org/10.3390/ijerph16183298
Chicago/Turabian StyleLubkowska, Anna, and Monika Chudecka. 2019. "The Effects of Small-Volume Liposuction Surgery of Subcutaneous Adipose Tissue in the Gluteal-Femoral Region on Selected Biochemical Parameters" International Journal of Environmental Research and Public Health 16, no. 18: 3298. https://doi.org/10.3390/ijerph16183298
APA StyleLubkowska, A., & Chudecka, M. (2019). The Effects of Small-Volume Liposuction Surgery of Subcutaneous Adipose Tissue in the Gluteal-Femoral Region on Selected Biochemical Parameters. International Journal of Environmental Research and Public Health, 16(18), 3298. https://doi.org/10.3390/ijerph16183298