Next Article in Journal
Exploring Perception of Vibrations from Rail: An Interview Study
Previous Article in Journal
Toward an Asbestos Ban in the United States
Article Menu
Issue 11 (November) cover image

Export Article

Open AccessArticle
Int. J. Environ. Res. Public Health 2017, 14(11), 1296; doi:10.3390/ijerph14111296

Presence of Legionella spp. in Hot Water Networks of Different Italian Residential Buildings: A Three-Year Survey

1
Department of Translational Research N.T.M.S., University of Pisa, 56126 Pisa, Italy
2
Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
*
Author to whom correspondence should be addressed.
Received: 9 October 2017 / Revised: 23 October 2017 / Accepted: 23 October 2017 / Published: 26 October 2017
View Full-Text   |   Download PDF [1751 KB, uploaded 26 October 2017]   |  

Abstract

Although the European reports highlight an increase in community-acquired Legionnaires’ disease cases, the risk of Legionella spp. in private houses is underestimated. In Pisa (Italy) we performed a three-year survey on Legionella presence in 121 buildings with an independent hot water production (IB); 64 buildings with a central hot water production (CB); and 35 buildings with a solar thermal system for hot water production (TB). From all the 220 buildings Legionella spp. was researched in two hot water samples collected either at the recirculation point or on the first floor and on the last floor, while the potable water quality was analysed in three cold water samples collected at the inlet from the aqueduct network, at the exit from the autoclave, and at the most remote tap. Legionella pneumophila sg1, Legionella pneumophila sg2–16, and non-pneumophila Legionella species were detected in 26% of the hot water networks, mostly in CB and TB. In these buildings we detected correlations between the presence of Legionella and the total chlorine concentration decrease and/or the increase of the temperature. Cold water resulted free from microbiological hazards, with the exception of Serratia liquefaciens and Enterobacter cloacae isolated at the exit from two different autoclaves. We observed an increase in total microbial counts at 22 °C and 37 °C between the samples collected at the most remote taps compared to the ones collected at the inlet from the aqueduct. The study highlights a condition of potential risk for susceptible categories of population and supports the need for measures of risk assessment and control. View Full-Text
Keywords: Legionella; residential buildings; water risk; community-acquired Legionnaire’s disease cases Legionella; residential buildings; water risk; community-acquired Legionnaire’s disease cases
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Totaro, M.; Valentini, P.; Costa, A.L.; Frendo, L.; Cappello, A.; Casini, B.; Miccoli, M.; Privitera, G.; Baggiani, A. Presence of Legionella spp. in Hot Water Networks of Different Italian Residential Buildings: A Three-Year Survey. Int. J. Environ. Res. Public Health 2017, 14, 1296.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top