Next Article in Journal
Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions
Previous Article in Journal
Ecological Niche Modeling of Risk Factors for H7N9 Human Infection in China
Article Menu

Export Article

Open AccessArticle
Int. J. Environ. Res. Public Health 2016, 13(6), 597;

Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico

Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León Ave. Universidad s/n, San Nicolás de los Garza 66450, N.L., Mexico
Laboratorio de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Nuevo Campus Universitario s/n, Chihuahua 31125, Mexico
Comisión Nacional de Áreas Naturales Protegidas, Dirección Regional Norte y Sierra Madre Occidental, Parque Nacional Cascada de Bassaseachic, Ocampo, Chihuahua 31203, Mexico
Author to whom correspondence should be addressed.
Academic Editor: Paul B. Tchounwou
Received: 4 May 2016 / Revised: 3 June 2016 / Accepted: 7 June 2016 / Published: 16 June 2016
Full-Text   |   PDF [2329 KB, uploaded 16 June 2016]   |  


Bacterial pathogens are a leading cause of waterborne disease, and may result in gastrointestinal outbreaks worldwide. Inhabitants of the Bassaseachic Falls National Park in Chihuahua, Mexico show seasonal gastroenteritis problems. This aim of this study was to detect enteropathogenic microorganisms responsible for diarrheal outbreaks in this area. In 2013, 49 surface water samples from 13 selected sampling sites along the Basaseachi waterfall and its main rivers, were collected during the spring, summer, autumn, and winter seasons. Fecal and total coliform counts were determined using standard methods; the AutoScan-4 system was used for identification of isolates and the antibiotic resistance profile by challenging each organism using 21 antibiotics. Significant differences among seasons were detected, where autumn samples resulted in the highest total (p < 0.05) and fecal (p < 0.001) coliform counts, whereas the lowest total coliform counts were recorded in spring. Significant differences between sampling sites were observed, where samples from sites 6, 8, and 11 had the highest total coliform counts (p < 0.009), whereas samples from site 9 exhibited the lowest one. From the microbiological analysis, 33 bacterial isolates from 13 different sites and four sampling seasons were selected; 53% of isolates were resistant to at least one antibiotic, and 15% exhibited a multidrug resistance (MDB) phenotype. MDB were identified as Klebsiella oxytoca (two out of four identified isolates), Escherichia coli (2/7), and Enterobacter cloacae (1/3). In addition, some water-borne microorganisms exhibited resistance to cefazoline, cefuroxime, ampicillin, and ampicillin-sulbactam. The presence of these microorganisms near rural settlements suggests that wastewater is the contamination source, providing one possible transmission mechanism for diarrheal outbreaks. View Full-Text
Keywords: water; pollution; antibiotic; multidrug resistance; enteric; microorganisms; MPN; environment water; pollution; antibiotic; multidrug resistance; enteric; microorganisms; MPN; environment

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material


Share & Cite This Article

MDPI and ACS Style

Delgado-Gardea, M.C.E.; Tamez-Guerra, P.; Gomez-Flores, R.; Zavala-Díaz de la Serna, F.J.; Eroza-de la Vega, G.; Nevárez-Moorillón, G.V.; Pérez-Recoder, M.C.; Sánchez-Ramírez, B.; González-Horta, M.C.; Infante-Ramírez, R. Multidrug-Resistant Bacteria Isolated from Surface Water in Bassaseachic Falls National Park, Mexico. Int. J. Environ. Res. Public Health 2016, 13, 597.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Int. J. Environ. Res. Public Health EISSN 1660-4601 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top