Blood Lead Concentrations in Jamaican Children with and without Autism Spectrum Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description
2.2. Assessment of Lead Exposure
2.3. Statistical Analysis
3. Results
Variables | Categories | Case (n = 100) N (%) | Control (n = 100) N (%) | p-Value |
---|---|---|---|---|
Sex of child | Male | 85 (85.0) | 85 (85.0) | 1.00 |
Age of child (months) | Age < 48 | 16 (16.0) | 13 (13.0) | 0.64 |
48 ≤ age < 72 | 46 (46.0) | 47 (47.0) | ||
Age ≥ 72 | 38 (38.0) | 40 (40.0) | ||
Place of child’s birth | Kingston parish | 19 (19.0) | 70 (70.0) | <0.01 |
Other areas | 81 (81.0) | 30 (30.0) | ||
Maternal age a (at child’s birth) | <35 years | 76 (76.0) | 84 (88.4) | 0.02 |
≥35 years | 24 (24.0) | 11 (11.6) | ||
Maternal education b (at child’s birth) | Up to high school ✝ | 53 (53.0) | 75 (76.5) | <0.01 |
Beyond high school ✝✝ | 47 (47.0) | 23 (23.5) | ||
Paternal age c (at child’s birth) | <35 years | 47 (48.5) | 66 (77.1) | <0.01 |
≥35 years | 50 (51.5) | 26 (28.3) | ||
Paternal education d (at child’s birth) | Up to high school ✝ | 53 (54.6) | 85 (87.6) | <0.01 |
Beyond high school ✝✝ | 44 (45.4) | 12 (12.4) | ||
Number of children in the household (Age ≤ 18 years) | 1–2 | 80 (80.0) | 53 (53.0) | <0.01 |
≥3 | 20 (20.0) | 47 (47.0) | ||
Number of adultsin the household (Age > 18 years) e | 1–2 | 64 (64.0) | 60 (60.6) | 0.66 |
≥3 | 36 (36.0) | 39 (39.4) | ||
Assets owned by the family | TV | 99 (99.0) | 94 (94.0) | 0.10 |
Refrigerator | 97 (97.0) | 85 (85.0) | <0.01 | |
Freezer | 12 (12.0) | 19 (19.0) | 0.17 | |
Living room set | 85 (85.0) | 47 (47.0) | <0.01 | |
Washing machine | 76 (76.0) | 53 (53.0) | <0.01 | |
Cars or other vehicle | 68 (68.0) | 37 (37.0) | <0.01 | |
Telephone/Cell phone | 99 (99.0) | 99 (99.0) | 1.00 | |
Cable/Satellite connection | 65 (65.0) | 36 (36.0) | <0.01 |
Exposure Variables | Category | ASD Case N (%) | TD Control N (%) | Matched OR (MOR) | 95% CI for MOR | p-Value | |
---|---|---|---|---|---|---|---|
Parental education levels a (at child’s birth) | At least one of the parents had education beyond high school | 64 (66.0) | 30 (31.6) | 3.50 | (1.84, 6.65) | <0.01 | |
Socioeconomic status (SES) | Higher SES (own a car) | 68 (68.0) | 37 (37.0) | 3.58 | (1.90, 6.80) | <0.01 | |
Source of drinking water b | Piped water | 94 (94.0) | 95 (96.0) | 0.67 | (0.19, 2.36) | 0.53 | |
Source of water for cooking c | Piped water | 94 (94.0) | 95 (96.0) | 0.67 | (0.19, 2.36) | 0.53 | |
Pica (habitually put items in the mouth) | Mud | 21 (21.0) | 7 (7.0) | 3.00 | (1.28, 7.06) | 0.01 | |
Paint chips | 5 (5.0) | 1 (1.0) | NR | NR | NR | ||
Living near a high traffic road d | 59 (59.6) | 29 (29.0) | 3.73 | (1.92, 7.26) | <0.01 | ||
Home environment | Living with adults whose job involve battery repair shop or battery recycling or processing e | 7 (7.1) | 2 (2.0) | 3.50 | (0.73, 16.85) | 0.19 | |
Living in a house with paint peeling or chipping off f | 29 (29.3) | 25 (25.3) | 1.19 | (0.67, 2.13) | 0.56 | ||
Living with adults whose job involve construction | 6 (6.0) | 11 (11.0) | 0.50 | (0.17, 1.46) | 0.21 | ||
Types of toys the child plays with | Plastic g | 97 (97.0) | 90 (90.9) | 3.00 | (0.81, 11.08) | 0.10 | |
Electronic h | 71 (71.0) | 40 (40.4) | 4.86 | (2.28, 10.43) | <0.01 | ||
Battery operated | 76 (79.0) | 52 (52.0) | 4.38 | (2.03, 9.43) | <0.01 | ||
Stuffed | 76 (76.0) | 66 (66.0) | 1.71 | (0.89, 3.31) | 0.11 | ||
Types of pots, pans, and dishes used at home | Cast iron i | 53 (53.0) | 42 (42.4) | 1.56 | (0.86, 2.81) | 0.14 | |
Steel coated with porcelain enamel j | 17 (17.0) | 5 (5.1) | 4.00 | (1.34, 11.96) | 0.01 | ||
Teflon k | 48 (48.5) | 24 (24.0) | 3.01 | (1.61, 5.91) | <0.01 | ||
Ceramic | 80 (80.0) | 72 (72.0) | 1.89 | (0.84, 4.24) | 0.12 | ||
Aluminum | 94 (94.0) | 84 (84.0) | 3.50 | (1.15, 10.63) | 0.03 | ||
Fruits and vegetables consumption l | Root vegetables | A. Yam, sweet potato, or dasheen | 73 (73.0) | 82 (82.8) | 0.52 | (0.25, 1.07) | 0.08 |
B. Carrot or pumpkin | 86 (86.0) | 98 (99.0) | 0.08 | (0.01, 0.59) | 0.01 | ||
Leafy vegetables | A. Lettuce | 47 (47.0) | 62 (62.6) | 0.57 | (0.33, 0.97) | 0.04 | |
B. Callaloo, broccoli, or pakchoi | 72 (72.0) | 94 (94.9) | 0.18 | (0.07, 0.46) | <0.01 | ||
C. Cabbage | 66 (66.0) | 94 (94.9) | 0.15 | (0.06, 0.38) | <0.01 | ||
Fruits | Tomatoes | 62 (62.0) | 85 (85.9) | 0.23 | (0.10, 0.51) | <0.01 | |
Ackee | 58 (58.0) | 92 (92.9) | 0.06 | (0.01, 0.23) | <0.01 | ||
Avocado | 29 (29.0) | 68 (68.7) | 0.19 | (0.09, 0.38) | <0.01 | ||
Green banana | 67 (67.0) | 90 (90.9) | 0.27 | (0.13, 0.57) | <0.01 | ||
Fried plantains | 70 (70.0) | 89 (89.9) | 0.17 | (0.06, 0.48) | <0.01 | ||
Seafood consumption | Ate salt water fish | 77 (77.0) | 89 (89.0) | 0.40 | (0.18, 0.91) | 0.03 | |
Ate fresh water fish (Pond fish, Tilapia) | 46 (46.0) | 52 (52.0) | 0.75 | (0.41, 1.38) | 0.36 | ||
Ate sardine, mackerel (Canned fish) | 75 (75.0) | 92 (92.0) | 0.26 | (0.11, 0.64) | <0.01 | ||
Ate tuna (Canned fish) | 31 (31.0) | 44 (44.0) | 0.55 | (0.30, 1.02) | 0.06 | ||
Ate salt fish (Pickled mackerel) | 70 (70.0) | 93 (93.0) | 0.15 | (0.05, 0.42) | <0.01 | ||
Ate shellfish (Lobsters, Crabs) | 7 (7.0) | 14 (14.0) | 0.42 | (0.15, 1.18) | 0.10 | ||
Ate shrimp | 19 (19.0) | 27 (27.0) | 0.62 | (0.31, 1.24) | 0.17 |
Exposure Variables | Category | Univariable Analysis | |||||
---|---|---|---|---|---|---|---|
Yes | No | p-Value | |||||
Mean ± SD (μg/dL) | N | Mean ± SD (μg/dL) | N | ||||
Place of child’s birth | Kingston parish | 2.82 ± 1.99 | 89 | 2.24 ± 2.00 | 111 | 0.15 | |
Paternal age (at child’s birth) | ≥35 years | 2.16 ± 1.98 | 76 | 2.68 ± 2.02 | 113 | 0.17 | |
Maternal age (at child’s birth) | ≥35 years | 2.10 ± 2.04 | 35 | 2.59 ± 2.06 | 160 | 0.26 | |
Parental education levels (at child’s birth) | At least one of the parents had education beyond high school | 2.43 ± 2.04 | 94 | 2.54 ± 2.02 | 98 | 0.78 | |
Socioeconomic status (SES) | High SES (own a car) | 2.46 ± 2.10 | 105 | 2.50 ± 1.97 | 95 | 0.90 | |
Source of drinking water | Piped water | 2.51 ± 2.07 | 189 | 1.96 ± 1.60 | 10 | 0.42 | |
Source of cooking water | Piped water | 2.51 ± 2.07 | 189 | 1.96 ± 1.60 | 10 | 0.42 | |
Pica (habitually put items in the mouth) | Habitually ate mud | 3.84 ± 2.04 | 28 | 2.31 ± 1.98 | 172 | <0.01 | |
Living near a high traffic road | 2.34 ± 2.24 | 88 | 2.59 ± 2.36 | 111 | 0.51 | ||
Home environment | Living with adults whose job involve battery repair shop or battery recycling or processing | 2.46 ± 2.03 | 9 | 2.48 ± 2.33 | 190 | 0.98 | |
Living in a house with paint peeling or chipping off | 2.30 ± 2.02 | 54 | 2.58 ± 2.11 | 144 | 0.43 | ||
Living with adults whose job involve construction | 1.74 ± 2.07 | 17 | 2.56 ± 1.93 | 183 | 0.13 | ||
Types of toys the child plays with | Plastic | 2.47 ± 1.90 | 187 | 2.88 ± 2.06 | 12 | 0.59 | |
Electronic | 2.22 ± 1.99 | 111 | 2.79 ± 2.02 | 88 | 0.16 | ||
Battery operated | 2.33 ± 2.03 | 131 | 2.80 ± 2.03 | 69 | 0.26 | ||
Stuffed | 2.33 ± 2.01 | 142 | 2.89 ± 2.15 | 58 | 0.18 | ||
Types of pots, pans, and dishes used at home | Cast iron | 2.47 ± 2.00 | 95 | 2.54 ± 2.12 | 104 | 0.84 | |
Steel coated with porcelain enamel | 2.37 ± 2.05 | 22 | 2.50 ± 2.09 | 177 | 0.82 | ||
Teflon | 2.03 ± 2.01 | 72 | 2.76 ± 2.08 | 127 | 0.04 | ||
Ceramic | 2.60 ± 2.02 | 152 | 2.12 ± 1.98 | 48 | 0.29 | ||
Aluminum | 2.45 ± 1.92 | 178 | 2.73 ± 2.07 | 22 | 0.65 | ||
Fruits and vegetables consumption | Root vegetables | A. Yam, sweet potato, or dasheen | 2.51 ± 2.30 | 155 | 2.48 ± 2.05 | 44 | 0.95 |
B. Carrot or pumpkin | 2.48 ± 2.04 | 184 | 2.80 ± 2.09 | 15 | 0.66 | ||
Leafy vegetables | A. Lettuce | 2.55 ± 2.09 | 109 | 2.44 ± 2.03 | 90 | 0.72 | |
B. Callaloo, broccoli, or pakchoi | 2.50 ± 1.98 | 166 | 2.51 ± 2.30 | 33 | 0.98 | ||
C. Cabbage | 2.48 ± 1.98 | 160 | 2.58 ± 2.45 | 39 | 0.82 | ||
Fruits | Tomatoes | 2.56 ± 1.99 | 147 | 2.33 ± 2.22 | 52 | 0.59 | |
Ackee | 2.63 ± 1.99 | 150 | 2.15 ± 2.23 | 49 | 0.29 | ||
Avocado | 2.48 ± 1.90 | 97 | 2.52 ± 2.21 | 102 | 0.90 | ||
Green banana | 2.55 ± 2.01 | 157 | 2.32 ± 2.20 | 42 | 0.55 | ||
Fried plantains | 2.62 ± 2.46 | 159 | 2.08 ± 1.96 | 42 | 0.25 | ||
Seafood consumption | Ate salt water fish | 2.56 ± 2.19 | 166 | 2.12 ± 2.03 | 34 | 0.31 | |
Ate fresh water fish (Pond fish, Tilapia) | 2.85 ± 2.07 | 98 | 2.17 ± 2.03 | 102 | 0.07 | ||
Ate sardine, mackerel (Canned fish) | 2.47 ± 2.03 | 167 | 2.50 ± 2.19 | 33 | 0.95 | ||
Ate tuna (Canned fish) | 2.30 ± 1.78 | 75 | 2.59 ± 2.21 | 125 | 0.43 | ||
Ate salt fish (Pickled mackerel) | 2.54 ± 2.42 | 163 | 2.21 ± 1.97 | 37 | 0.47 | ||
Ate shellfish (Lobsters, Crabs) | 3.76 ± 1.88 | 21 | 2.36 ± 2.07 | 179 | 0.05 | ||
Ate shrimp | 1.98 ± 1.93 | 46 | 2.65 ± 2.09 | 154 | 0.08 |
Models | Mean ± SD (μg/dL) | p-Value | |
---|---|---|---|
ASD Cases | TD Controls | ||
Unadjusted | 2.25 ± 2.23 | 2.73 ± 1.85 | <0.05 |
Adjusted a | 2.26 ± 2.03 | 2.43 ± 2.03 | 0.62 |
Adjusted b | 2.55 ± 2.02 | 2.72 ± 2.02 | 0.64 |
Exposure Variables | Category | t-Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n = 100 ASD Cases | n = 100 TD Controls | ||||||||||
Yes | No | p-Value | Yes | No | p-Value | ||||||
N | Mean ± SD (μg/dL) | N | Mean± SD (μg/dL) | N | Mean ± SD (μg/dL) | N | Mean ± SD (μg/dL) | ||||
Place of child’s birth | Kingston parish | 19 | 3.29 ± 2.59 | 81 | 2.06 ± 2.09 | 0.02 | 70 | 3.04 ± 1.83 | 30 | 2.14 ± 1.79 | <0.01 |
Maternal age (at child’s birth) | >35 years | 24 | 1.70 ± 2.17 | 76 | 2.46 ± 2.21 | <0.05 | 11 | 2.88 ± 1.54 | 84 | 2.70 ± 1.88 | 0.75 |
Parental education levels (at child’s birth) | At least one of the parents had education beyond high school | 64 | 2.08 ± 2.14 | 33 | 2.56 ± 2.31 | 0.22 | 30 | 2.35 ± 1.83 | 65 | 2.92 ± 1.88 | 0.12 |
Socioeconomic status (SES) | High SES (family owns a car) | 68 | 2.11 ± 2.32 | 32 | 2.57 ± 2.01 | 0.25 | 37 | 2.44 ± 1.65 | 63 | 2.92 ± 1.96 | 0.16 |
Types of pots, pans, and dishes used at home | Teflon | 48 | 1.97 ± 2.19 | 51 | 2.53 ± 2.26 | 0.12 | 24 | 2.29 ± 1.88 | 76 | 2.89 ± 1.83 | 0.10 |
Seafood Consumption | Ate shellfish (Lobsters, crabs) | 7 | 1.81 ± 1.56 | 93 | 2.28 ± 2.27 | 0.46 | 14 | 3.58 ± 1.81 | 86 | 2.62 ± 1.85 | 0.08 |
4. Discussion
4.1. Blood Lead Concentrations and ASD
4.2. Role of SES and Sociodemographic Indicators as Potential Confounders
4.3. Role of Dietary Factors as Potential Confounders
4.4. Stratified Analyses, Estimated Effect Size, Sample Size, and Statistical Power
5. Limitations
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rapin, I. Autism. N. Engl. J. Med. 1997, 337, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Newschaffer, C.J.; Croen, L.A.; Daniels, J.; Giarelli, E.; Grether, J.K.; Levy, S.E.; Mandell, D.S.; Miller, L.A.; Pinto-Martin, J.; Reaven, J.; et al. The epidemiology of autism spectrum disorders. Annu. Rev. Public Health 2007, 28, 235–258. [Google Scholar] [CrossRef] [PubMed]
- Volkmar, F.; Chawarska, K.; Klin, A. Autism in infancy and early childhood. Annu. Rev. Psychol. 2005, 56, 315–336. [Google Scholar] [CrossRef] [PubMed]
- Volkmar, F.R.; Chawarska, K. Autism in infants: An update. World Psychiatry 2008, 7, 19–21. [Google Scholar] [PubMed]
- Genuis, S.J. Is autism reversible? Acta Paediatr. 2009, 98, 1575–1578. [Google Scholar] [CrossRef] [PubMed]
- Autism and Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014, 63, 1–21. [Google Scholar]
- Gardener, H.; Spiegelman, D.; Buka, S.L. Perinatal and neonatal risk factors for autism:A comprehensive meta-analysis. Pediatrics 2011, 128, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Christian, S. Genetics of autism spectrum disorders. Curr. Neurol. Neurosci. Rep. 2009, 9, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.; Li, Q.; Bressler, J.; Avramopoulos, D.; Newschaffer, C.; Fallin, M.D. Glutathione pathway gene variation and risk of autism spectrum disorders. J. Neurodev. Disord. 2011, 3, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, J.D.; Hof, P.R. The emerging neuroscience of autism spectrum disorders. Brain Res. 2011, 1380, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Bill, B.R.; Geschwind, D.H. Genetic advances in autism: Heterogeneity and convergence on shared pathways. Curr. Opin. Genet. Dev. 2009, 19, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.R. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr. Opin. Neurol. 2010, 23, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J. What causes autism? Exploring the environmental contribution. Curr. Opin. Pediatr. 2010, 22, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Hallmayer, J.; Cleveland, S.; Torres, A.; Phillips, J.; Cohen, B.; Torigoe, T.; Miller, J.; Fedele, A.; Collins, J.; Smith, K.; et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 2011, 68, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- James, S.J. Oxidative stress and the metabolic pathology of autism. In Autism: Current Theories and Evidence; Zimmerman, A.W., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 245–268. [Google Scholar]
- Quig, D. Cysteine metabolism and metal toxicity. Altern. Med. Rev. 1998, 3, 262–270. [Google Scholar] [PubMed]
- Mendola, P.; Selevan, S.G.; Gutter, S.; Rice, D. Environmental factors associated with a spectrum of neurodevelopmental deficits. Ment. Retard. Dev. Disabil. Res. Rev. 2002, 8, 188–197. [Google Scholar] [CrossRef] [PubMed]
- CDC’s Advisory Committee on Childhood Lead Poisoning Prevention. Interpreting and managing blood lead levels <10 microg/dL in children and reducing childhood exposures to lead: recommendations of CDC’s Advisory Committee on Childhood Lead Poisoning Prevention. MMWR Recomm. Rep. 2007, 56, 1–16. [Google Scholar]
- Canfield, R.L.; Henderson, C.R., Jr.; Cory-Slechta, D.A.; Cox, C.; Jusko, T.A.; Lanphear, B.P. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N. Engl. J. Med. 2003, 348, 1517–1526. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics Committee on Environmental Health. Lead exposure in children: Prevention, detection, and management. Pediatrics 2005, 116, 1036–1046. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). CDC Response to Advisory Committee on Childhood Lead Poisoning Prevention Recommendations in “Low Level Lead Exposure Harms Children: A Renewed Call of Primary Prevention”; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2012.
- Centers for Disease Control and Prevention (CDC). What Do Parents Need to Know to Protect Their Children?—Update on Blood Lead Levels in Children; Centers for Disease Control and Prevention (CDC): Atlanta, GA, USA, 2012.
- Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr. 2008, 20, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Ha, M.; Kwon, H.J.; Lim, M.H.; Jee, Y.K.; Hong, Y.C.; Leem, J.H.; Sakong, J.; Bae, J.M.; Hong, S.J.; Roh, Y.M.; et al. Low blood levels of lead and mercury and symptoms of attention deficit hyperactivity in children: A report of the children’s health and environment research (CHEER). Neurotoxicology 2009, 30, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Manser, W.W.; Khan, M.A.; Hasan, Z. Trace element studies in Karachi populations. Part III: Blood copper, zinc, magnesium and lead levels in psychiatric patients with disturbed behaviour. J. Pak. Med. Assoc. 1989, 39, 235–238. [Google Scholar] [PubMed]
- Cohen, D.J.; Johnson, W.T.; Caparulo, B.K. Pica and elevated blood lead level in autistic and atypical children. Am. J. Dis. Child 1976, 130, 47–48. [Google Scholar] [PubMed]
- Fido, A.; Al-Saad, S. Toxic trace elements in the hair of children with autism. Autism 2005, 9, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Kern, J.K.; Grannemann, B.D.; Trivedi, M.H.; Adams, J.B. Sulfhydryl-reactive metals in autism. J. Toxicol. Environ. Health A 2007, 70, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Yorbik, O.; Kurt, I.; Hasimi, A.; Ozturk, O. Chromium, cadmium, and lead levels in urine of children with autism and typically developing controls. Biol. Trace Elem. Res. 2010, 135, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.; Vandermeer, B.; Simonetti, A.; Buka, I. Is lead a concern in Canadian autistic children? Paediatr. Child Health 2010, 15, 17–22. [Google Scholar] [PubMed]
- Tian, Y.; Green, P.G.; Stamova, B.; Hertz-Picciotto, I.; Pessah, I.N.; Hansen, R.; Yang, X.; Gregg, J.P.; Ashwood, P.; Jickling, G.; et al. Correlations of gene expression with blood lead levels in children with autism compared to typically developing controls. Neurotox. Res. 2011, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Blaurock-Busch, E.; Amin, O.R.; Rabah, T. Heavy metals and trace elements in hair and urine of a sample of arab children with autistic spectrum disorder. Maedica (Buchar) 2011, 6, 247–257. [Google Scholar]
- Blaurock-Busch, E.; Amin, O.R.; Dessoki, H.H.; Rabah, T. Toxic metals and essential elements in hair and severity of symptoms among children with autism. Maedica (Buchar) 2012, 7, 38–48. [Google Scholar]
- Volk, H.E.; Lurmann, F.; Penfold, B.; Hertz-Picciotto, I.; McConnell, R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry 2013, 70, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.B.; Audhya, T.; McDonough-Means, S.; Rubin, R.A.; Quig, D.; Geis, E.; Gehn, E.; Loresto, M.; Mitchell, J.; Atwood, S.; et al. Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol. Trace Elem. Res 2013, 151, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi Priya, M.; Geetha, A. Level of trace elements (copper, zinc, magnesium and selenium) and toxic elements (lead and mercury) in the hair and nail of children with autism. Biol. Trace Elem. Res. 2010, 142, 148–158. [Google Scholar] [CrossRef] [PubMed]
- El-Ansary, A.K.; Bacha, A.B.; Ayahdi, L.Y. Relationship between chronic lead toxicity and plasma neurotransmitters in autistic patients from Saudi Arabia. Clin. Biochem. 2011, 44, 1116–1120. [Google Scholar] [CrossRef] [PubMed]
- Alabdali, A.; Al-Ayadhi, L.; El-Ansary, A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behav. Brain Funct. 2014, 10. [Google Scholar] [CrossRef]
- Knight, C.; Kaiser, J.; Lalor, G.C.; Robotham, H.; Witter, J.V. Heavy metals in surface water and stream sediments in Jamaica. Environ. Geochem. Health 1997, 19, 63–66. [Google Scholar] [CrossRef]
- Lalor, G.C. Geochemical mapping in Jamaica. Environ. Geochem. Health 1996, 18, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Finster, M.E.; Gray, K.A.; Binns, H.J. Lead levels of edibles grown in contaminated residential soils: A field survey. Sci. Total Environ. 2004, 320, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Wright, V.; Jones, S.; Omoruyi, F.O. Effect of bauxite mineralized soil on residual metal levels in some post harvest food crops in Jamaica. Bull. Environ. Contam. Toxicol. 2012, 89, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Loveland, K.A.; Pearson, D.A.; Bressler, J.; Chen, Z.; Ardjomand-Hessabi, M.; Shakespeare-Pellington, S.; Grove, M.L.; Beecher, C.; et al. Maternal and paternal age are jointly associated with childhood autism in Jamaica. J. Autism Dev. Disord. 2012, 42, 1928–1938. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Loveland, K.A.; Ardjomand-Hessabi, M.; Chen, Z.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Bloom, K.; Pearson, D.A.; et al. Seafood consumption and blood mercury concentrations in Jamaican children with and without autism spectrum disorders. Neurotox. Res. 2013, 23, 22–38. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Ardjomand-Hessabi, M.; Loveland, K.A.; Dickerson, A.S.; Chen, Z.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Bloom, K.; et al. The role of drinking water sources, consumption of vegetables and seafood in relation to blood arsenic concentrations of Jamaican children with and without Autism Spectrum Disorders. Sci. Total Environ. 2012, 433, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Pearson, D.A.; Boerwinkle, E. Blood manganese concentrations in Jamaican children with and without autism spectrum disorders. Environ. Health 2014, 13. [Google Scholar] [CrossRef]
- Rahbar, M.H.; Samms-Vaughan, M.; Ma, J.; Bressler, J.; Loveland, K.A.; Ardjomand-Hessabi, M.; Dickerson, A.S.; Grove, M.L.; Shakespeare-Pellington, S.; Beecher, C.; et al. Role of metabolic genes in blood arsenic concentrations of Jamaican children with and without autism spectrum disorder. Int. J. Environ. Res. Public Health 2014, 11, 7874–7895. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Boerwinkle, E. Factors associated with blood lead concentrations of children in Jamaica. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2015, in press. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision (DSM-IV-TR); American Psychiatric Publishing, Inc.: Washington, DC, USA, 2000. [Google Scholar]
- Schopler, E.; Reichler, R.; DeVellis, R.; Daly, K. Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J. Autism Dev. Disord. 1980, 10, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Risi, S.; Lambrecht, L.; Cook, E.H.; Leventhal, B.L.; DiLavore, P.C.; Pickles, A.; Rutter, M. The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 2000, 30, 205–223. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Pickles, A.; McLennan, J.; Rutter, M.; Bregman, J.; Folstein, S.; Fombonne, E.; Leboyer, M.; Minshew, N. Diagnosing autism: Analyses of data from the autism diagnostic interview. J. Autism Dev. Disord. 1997, 27, 501–517. [Google Scholar] [CrossRef] [PubMed]
- Rutter, M.; Bailey, A.; Lord, C. SCQ: The Social Communication Questionnaire. Manual; Western Psychological Services: Los Angeles, CA, USA, 2003. [Google Scholar]
- Mulligan, A.; Richardson, T.; Anney, R.; Gill, M. The Social Communication Questionnaire in a sample of the general population of school-going children. Irish J. Med. Sci. 2009, 178, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Matte, T.D.; Figueroa, J.P.; Ostrowski, S.; Burr, G.; Jackson-Hunt, L.; Keenlyside, R.A.; Baker, E.L. Lead poisoning among household members exposed to lead-acid battery repair shops in Kingston, Jamaica. Int. J. Epidemiol. 1989, 18, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Matte, T.D.; Figueroa, J.P.; Ostrowski, S.; Burr, G.; Jackson-Hunt, L.; Baker, E.L. Lead exposure from conventional and cottage lead smelting in Jamaica. Arch. Environ. Contam. Toxicol. 1991, 21, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Gangoso, L.; Alvarez-Lloret, P.; Rodriguez-Navarro, A.A.; Mateo, R.; Hiraldo, F.; Donazar, J.A. Long-term effects of lead poisoning on bone mineralization in vultures exposed to ammunition sources. Environ. Pollut. 2009, 157, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Lead; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2007. [Google Scholar]
- Sanna, E.; Liguori, A.; Palmas, L.; Soro, M.R.; Floris, G. Blood and hair lead levels in boys and girls living in two Sardinian towns at different risks of lead pollution. Ecotoxicol. Environ. Saf. 2003, 55, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Schutz, A.; Olsson, M.; Jensen, A.; Gerhardsson, L.; Borjesson, J.; Mattsson, S.; Skerfving, S. Lead in finger bone, whole blood, plasma and urine in lead-smelter workers: Extended exposure range. Int. Arch. Occup. Environ. Health 2005, 78, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Fukui, Y.; Miki, M.; Ukai, H.; Okamoto, S.; Takada, S.; Higashikawa, K.; Ikeda, M. Urinary lead as a possible surrogate of blood lead among workers occupationally exposed to lead. Int. Arch. Occup. Environ Health 1999, 72, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Hirata, M.; Yoshida, T.; Miyajima, K.; Kosaka, H.; Tabuchi, T. Correlation between lead in plasma and other indicators of lead exposure among lead-exposed workers. Int. Arch. Occup. Environ. Health 1995, 68, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Gulson, B.L.; Cameron, M.A.; Smith, A.J.; Mizon, K.J.; Korsch, M.J.; Vimpani, G.; McMichael, A.J.; Pisaniello, D.; Jameson, C.W.; Mahaffey, K.R. Blood lead-urine lead relationships in adults and children. Environ. Res. 1998, 78, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Shimbo, S.; Zhang, Z.W.; Moon, C.S.; Watanabe, T.; Nakatsuka, H.; Matsuda-Inoguchi, N.; Higashikawa, K.; Ikeda, M. Correlation between urine and blood concentrations, and dietary intake of cadmium and lead among women in the general population of Japan. Int. Arch. Occup. Environ. Health 2000, 73, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Moon, C.S.; Zhang, Z.W.; Shimbo, S.; Watanabe, T.; Moon, D.H.; Lee, C.U.; Lee, B.K.; Ahn, K.D.; Lee, S.H.; Ikeda, M. Evaluation of urinary cadmium and lead as markers of background exposure of middle-aged women in Korea. Int. Arch. Occup. Environ. Health 1998, 71, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.F.; Neves, E.B. Use of urine lead level as an exposure indicator and its relationship to blood lead. Cad. Saude Publica 2008, 24, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Lalor, G.; Vutchkov, M.; Bryan, S. Blood lead levels of Jamaican children island-wide. Sci. Total Environ. 2007, 374, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Tong, I.S.; Lu, Y. Identification of confounders in the assessment of the relationship between lead exposure and child development. Ann. Epidemiol. 2001, 11, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Janszky, I.; Ahlbom, A.; Svensson, A.C. The Janus face of statistical adjustment: Confounders versus colliders. Eur. J. Epidemiol. 2010, 25, 361–363. [Google Scholar] [CrossRef] [PubMed]
- Hernan, M.A.; Hernandez-Diaz, S.; Werler, M.M.; Mitchell, A.A. Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology. Am. J. Epidemiol. 2002, 155, 176–184. [Google Scholar]
- Hernandez-Diaz, S.; Wilcox, A.J.; Schisterman, E.F.; Hernan, M.A. From causal diagrams to birth weight-specific curves of infant mortality. Eur. J. Epidemiol. 2008, 23, 163–166. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute Inc. SAS® 9.3, SAS Institute Inc.: Cary, NC, USA, 2011.
- Al-Farsi, Y.M.; Waly, M.I.; Al-Sharbati, M.M.; Al-Shafaee, M.A.; Al-Farsi, O.A.; Al-Khaduri, M.M.; Gupta, I.; Ouhtit, A.; Al-Adawi, S.; Al-Said, M.F.; et al. Levels of heavy metals and essential minerals in hair samples of children with autism in Oman: A case-control study. Biol. Trace Elem. Res. 2013, 151, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Fombonne, E.; Simmons, H.; Ford, T.; Meltzer, H.; Goodman, R. Prevalence of pervasive developmental disorders in the British nationwide survey of child mental health. Int. Rev. Psychiatry 2003, 15, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; Wagstaff, A.; Schellenberg, J.A.; Gwatkin, D.; Claeson, M.; Habicht, J.P. Applying an equity lens to child health and mortality: More of the same is not enough. Lancet 2003, 362, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, T.K.; Schendel, D. Sociodemographic risk factors for autism in a US metropolitan area. J. Autism Dev. Disord. 2007, 37, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Durkin, M.S.; Maenner, M.J.; Meaney, F.J.; Levy, S.E.; DiGuiseppi, C.; Nicholas, J.S.; Kirby, R.S.; Pinto-Martin, J.A.; Schieve, L.A. Socioeconomic inequality in the prevalence of autism spectrum disorder: evidence from a U.S. cross-sectional study. PLoS One 2010, 5. [Google Scholar] [CrossRef] [PubMed]
- Hertz-Picciotto, I.; Green, P.G.; Delwiche, L.; Hansen, R.; Walker, C.; Pessah, I.N. Blood mercury concentrations in CHARGE Study children with and without autism. Environ. Health Perspect. 2010, 118, 161–166. [Google Scholar] [PubMed]
- King, M.D.; Bearman, P.S. Socioeconomic status and the increased prevalence of autism in California. Am. Sociol. Rev. 2011, 76, 320–346. [Google Scholar] [CrossRef] [PubMed]
- Sasanfar, R.; Haddad, S.; Tolouei, A.; Ghadami, M.; Yu, D.; Santangelo, S. Paternal age increases the risk for autism in an Iranian population sample. Mol. Autism 2010, 1. [Google Scholar] [CrossRef]
- Croen, L.A.; Grether, J.K.; Hoogstrate, J.; Selvin, S. The changing prevalence of autism in California. J. Autism Dev. Disord. 2002, 32, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Fountain, C.; King, M.D.; Bearman, P.S. Age of diagnosis for autism: Individual and community factors across 10 birth cohorts. J. Epidemiol. Community Health 2011, 65, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Windham, G.C.; Anderson, M.C.; Croen, L.A.; Smith, K.S.; Collins, J.; Grether, J.K. Birth prevalence of autism spectrum disorders in the San Francisco Bay area by demographic and ascertainment source characteristics. J. Autism Dev. Disord. 2011, 41, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- Liptak, G.S.; Benzoni, L.B.; Mruzek, D.W.; Nolan, K.W.; Thingvoll, M.A.; Wade, C.M.; Fryer, G.E. Disparities in diagnosis and access to health services for children with autism: Data from the National Survey of Children’s Health. J. Dev. Behav. Pediatr. 2008, 29, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Larsson, H.J.; Eaton, W.W.; Madsen, K.M.; Vestergaard, M.; Olesen, A.V.; Agerbo, E.; Schendel, D.; Thorsen, P.; Mortensen, P.B. Risk factors for autism: Perinatal factors, parental psychiatric history, and socioeconomic status. Am. J. Epidemiol. 2005, 161, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Naess, O.; Piro, F.N.; Nafstad, P.; Smith, G.D.; Leyland, A.H. Air pollution, social deprivation, and mortality: A multilevel cohort study. Epidemiology 2007, 18, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.; Verma, S.; Kumar, A.; Siddiqui, M.K. Blood lead levels in children of Lucknow, India. Environ. Toxicol. 2010, 25, 48–54. [Google Scholar] [PubMed]
- Iriani, D.U.; Matsukawa, T.; Tadjudin, M.K.; Itoh, H.; Yokoyama, K. Cross-sectional study on the effects of socioeconomic factors on lead exposure in children by gender in Serpong, Indonesia. Int. J. Environ. Res. Public Health 2012, 9, 4135–4149. [Google Scholar] [CrossRef] [PubMed]
- Gale, N.L.; Adams, C.D.; Wixson, B.G.; Loftin, K.A.; Huang, Y.W. Lead concentrations in fish and river sediments in the old lead belt of Missouri. Environ. Sci. Technol. 2002, 36, 4262–4268. [Google Scholar] [CrossRef] [PubMed]
- Gale, N.L.; Adams, C.D.; Wixson, B.G.; Loftin, K.A.; Huang, Y.W. Lead, zinc, copper, and cadmium in fish and sediments from the Big River and Flat River Creek of Missouri’s Old Lead Belt. Environ. Geochem. Health 2004, 26, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Meador, J.P.; Ernest, D.W.; Kagley, A.N. A comparison of the non-essential elements cadmium, mercury, and lead found in fish and sediment from Alaska and California. Sci. Total Environ. 2005, 339, 189–205. [Google Scholar] [CrossRef] [PubMed]
- Rahbar, M.H.; White, F.; Agboatwalla, M.; Hozhabri, S.; Luby, S. Factors associated with elevated blood lead concentrations in children in Karachi, Pakistan. Bull. World Health Organ 2002, 80, 769–775. [Google Scholar] [PubMed]
- Valicenti-McDermott, M.; McVicar, K.; Rapin, I.; Wershil, B.K.; Cohen, H.; Shinnar, S. Frequency of gastrointestinal symptoms in children with autistic spectrum disorders and association with family history of autoimmune disease. J. Dev. Behav. Pediatr. 2006, 27, S128–S136. [Google Scholar] [CrossRef] [PubMed]
- Horvath, K.; Perman, J.A. Autistic disorder and gastrointestinal disease. Curr. Opin. Pediatr. 2002, 14, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.H.; Voigt, R.G.; Katusic, S.K.; Weaver, A.L.; Barbaresi, W.J. Incidence of gastrointestinal symptoms in children with autism: A population-based study. Pediatrics 2009, 124, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.E.; Daniels, A.M.; Law, J.K.; Law, P.A.; Kaufmann, W.E. Trends in autism spectrum disorder diagnoses: 1994–2007. J. Autism Dev. Disord. 2009, 39, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahbar, M.H.; Samms-Vaughan, M.; Dickerson, A.S.; Loveland, K.A.; Ardjomand-Hessabi, M.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Pearson, D.A.; Boerwinkle, E. Blood Lead Concentrations in Jamaican Children with and without Autism Spectrum Disorder. Int. J. Environ. Res. Public Health 2015, 12, 83-105. https://doi.org/10.3390/ijerph120100083
Rahbar MH, Samms-Vaughan M, Dickerson AS, Loveland KA, Ardjomand-Hessabi M, Bressler J, Shakespeare-Pellington S, Grove ML, Pearson DA, Boerwinkle E. Blood Lead Concentrations in Jamaican Children with and without Autism Spectrum Disorder. International Journal of Environmental Research and Public Health. 2015; 12(1):83-105. https://doi.org/10.3390/ijerph120100083
Chicago/Turabian StyleRahbar, Mohammad H., Maureen Samms-Vaughan, Aisha S. Dickerson, Katherine A. Loveland, Manouchehr Ardjomand-Hessabi, Jan Bressler, Sydonnie Shakespeare-Pellington, Megan L. Grove, Deborah A. Pearson, and Eric Boerwinkle. 2015. "Blood Lead Concentrations in Jamaican Children with and without Autism Spectrum Disorder" International Journal of Environmental Research and Public Health 12, no. 1: 83-105. https://doi.org/10.3390/ijerph120100083
APA StyleRahbar, M. H., Samms-Vaughan, M., Dickerson, A. S., Loveland, K. A., Ardjomand-Hessabi, M., Bressler, J., Shakespeare-Pellington, S., Grove, M. L., Pearson, D. A., & Boerwinkle, E. (2015). Blood Lead Concentrations in Jamaican Children with and without Autism Spectrum Disorder. International Journal of Environmental Research and Public Health, 12(1), 83-105. https://doi.org/10.3390/ijerph120100083