Next Article in Journal
Natural Product Chemistry of Gorgonian Corals of Genus Junceella—Part II
Next Article in Special Issue
Toxin Levels and Profiles in Microalgae from the North-Western Adriatic Sea—15 Years of Studies on Cultured Species
Previous Article in Journal
Tetrodotoxin-Bupivacaine-Epinephrine Combinations for Prolonged Local Anesthesia
Previous Article in Special Issue
A Kinetic Study of Accumulation and Elimination of Microcystin-LR in Yellow Perch (Perca Flavescens) Tissue and Implications for Human Fish Consumption
Mar. Drugs 2011, 9(12), 2729-2772; doi:10.3390/md9122729

Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals

1,*  and 2
1 Laboratory of Evaluation and Promotion of Environmental Health, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21045-900, Brazil 2 Departament of Ecology and Marine Resources, Federal University of Rio de Janeiro State (UNIRIO), Av. Pasteur 458, Urca, Rio de Janeiro, RJ 22290-040, Brazil
* Author to whom correspondence should be addressed.
Received: 18 October 2011 / Revised: 29 November 2011 / Accepted: 1 December 2011 / Published: 16 December 2011
(This article belongs to the Special Issue Algal Toxins)
View Full-Text   |   Download PDF [393 KB, uploaded 24 February 2015]   |   Browse Figures


Cyanobacteria are photosynthetic prokaryotes with wide geographic distribution that can produce secondary metabolites named cyanotoxins. These toxins can be classified into three main types according to their mechanism of action in vertebrates: hepatotoxins, dermatotoxins and neurotoxins. Many studies on the effects of cyanobacteria and their toxins over a wide range of aquatic organisms, including invertebrates and vertebrates, have reported acute effects (e.g., reduction in survivorship, feeding inhibition, paralysis), chronic effects (e.g., reduction in growth and fecundity), biochemical alterations (e.g., activity of phosphatases, GST, AChE, proteases), and behavioral alterations. Research has also focused on the potential for bioaccumulation and transferring of these toxins through the food chain. Although the herbivorous zooplankton is hypothesized as the main target of cyanotoxins, there is not unquestionable evidence of the deleterious effects of cyanobacteria and their toxins on these organisms. Also, the low toxin burden in secondary consumers points towards biodilution of microcystins in the food web as the predominant process. In this broad review we discuss important issues on bioaccumulation and the effects of cyanotoxins, with emphasis on microcystins, as well as drawbacks and future needs in this field of research.
Keywords: cyanobacteria; cyanotoxins; bioaccumulation; invertebrates; vertebrates cyanobacteria; cyanotoxins; bioaccumulation; invertebrates; vertebrates
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
MDPI and ACS Style

Ferrão-Filho, A.S.; Kozlowsky-Suzuki, B. Cyanotoxins: Bioaccumulation and Effects on Aquatic Animals. Mar. Drugs 2011, 9, 2729-2772.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here


Cited By

[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert