Next Article in Journal
Interactions Between Epilepsy and Plasticity
Next Article in Special Issue
Third International Electronic Conference on Medicinal Chemistry (ECMC-3)
Previous Article in Journal
Drug Repurposing for Schistosomiasis: Combinations of Drugs or Biomolecules
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessArticle
Pharmaceuticals 2018, 11(1), 16; https://doi.org/10.3390/ph11010016

Vitamin E Phosphate Nucleoside Prodrugs: A Platform for Intracellular Delivery of Monophosphorylated Nucleosides

1
Epigenetics Pharma, 9270 SE 36th Pl, Mercer Island, WA 98040, USA
2
Southern Research, 2000 9th Avenue South, Birmingham, AL 35205, USA
*
Author to whom correspondence should be addressed.
Received: 23 December 2017 / Revised: 30 January 2018 / Accepted: 30 January 2018 / Published: 6 February 2018
View Full-Text   |   Download PDF [999 KB, uploaded 6 February 2018]   |  

Abstract

Vitamin E phosphate (VEP) nucleoside prodrugs are designed to bypass two mechanisms of tumor resistance to therapeutic nucleosides: nucleoside transport and kinase downregulation. Certain isoforms of vitamin E (VE) have shown activity against solid and hematologic tumors and result in chemosensitization. Because gemcitabine is one of the most common chemotherapeutics for the treatment of cancer, it was used to demonstrate the constructs utility. Four different VE isoforms were conjugated with gemcitabine at the 5′ position. Two of these were δ-tocopherol-monophosphate (MP) gemcitabine (NUC050) and δ-tocotrienol-MP gemcitabine (NUC052). NUC050 was shown to be able to deliver gemcitabine-MP intracellularly by a nucleoside transport independent mechanism. Its half-life administered IV in mice was 3.9 h. In a mouse xenograft model of non-small cell lung cancer (NSCLC) NCI-H460, NUC050 at a dose of 40 mg/kg IV qwk × 4 resulted in significant inhibition to tumor growth on days 11–31 (p < 0.05) compared to saline control (SC). Median survival was 33 days (NUC050) vs. 25.5 days (SC) ((hazard ratio) HR = 0.24, p = 0.017). Further, NUC050 significantly inhibited tumor growth compared to historic data with gemcitabine at 135 mg/kg IV q5d × 3 on days 14–41 (p < 0.05). NUC052 was administered at a dose of 40 mg/kg IV qwk × 2 followed by 50 mg/kg qwk × 2. NUC052 resulted in inhibition to tumor growth on days 14–27 (p < 0.05) and median survival was 34 days (HR = 0.27, p = 0.033). NUC050 and NUC052 have been shown to be safe and effective in a mouse xenograft of NSCLC. View Full-Text
Keywords: cancer; gemcitabine; nucleoside; nucleotide; prodrug; vitamin E; tocopherol; tocotrienol cancer; gemcitabine; nucleoside; nucleotide; prodrug; vitamin E; tocopherol; tocotrienol
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Daifuku, R.; Koratich, M.; Stackhouse, M. Vitamin E Phosphate Nucleoside Prodrugs: A Platform for Intracellular Delivery of Monophosphorylated Nucleosides. Pharmaceuticals 2018, 11, 16.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Pharmaceuticals EISSN 1424-8247 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top