Next Article in Journal
Antibiotic Persistence as a Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions
Previous Article in Journal
Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease Treatment
Article Menu
Issue 1 (March) cover image

Export Article

Open AccessReview
Pharmaceuticals 2018, 11(1), 13; doi:10.3390/ph11010013

A Systematic Review and Meta-Analysis of the In Vivo Haemodynamic Effects of Δ9-Tetrahydrocannabinol

Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, University of Nottingham, Derby DE22 3DT, UK
Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Author to whom correspondence should be addressed.
Received: 4 December 2017 / Revised: 25 January 2018 / Accepted: 26 January 2018 / Published: 31 January 2018
(This article belongs to the Special Issue Cannabinoids as Medicines)
View Full-Text   |   Download PDF [3562 KB, uploaded 31 January 2018]   |  


9-Tetrahydrocannabinol (THC) has complex effects on the cardiovascular system. We aimed to systematically review studies of THC and haemodynamic alterations. PubMed, Medline, and EMBASE were searched for relevant studies. Changes in blood pressure (BP), heart rate (HR), and blood flow (BF) were analysed using the Cochrane Review Manager Software. Thirty-one studies met the eligibility criteria. Fourteen publications assessed BP (number, n = 541), 22 HR (n = 567), and 3 BF (n = 45). Acute THC dosing reduced BP and HR in anaesthetised animals (BP, mean difference (MD) −19.7 mmHg, p < 0.00001; HR, MD −53.49 bpm, p < 0.00001), conscious animals (BP, MD −12.3 mmHg, p = 0.0007; HR, MD −30.05 bpm, p < 0.00001), and animal models of stress or hypertension (BP, MD −61.37 mmHg, p = 0.03) and increased cerebral BF in murine stroke models (MD 32.35%, p < 0.00001). Chronic dosing increased BF in large arteries in anaesthetised animals (MD 21.95 mL/min, p = 0.05) and reduced BP in models of stress or hypertension (MD −22.09 mmHg, p < 0.00001). In humans, acute administration increased HR (MD 8.16 bpm, p < 0.00001). THC acts differently according to species and experimental conditions, causing bradycardia, hypotension and increased BF in animals; and causing increased HR in humans. Data is limited, and further studies assessing THC-induced haemodynamic changes in humans should be considered. View Full-Text
Keywords: 9-Tetrahydrocannabinol; THC; cardiovascular system; blood pressure; heart rate; blood flow 9-Tetrahydrocannabinol; THC; cardiovascular system; blood pressure; heart rate; blood flow

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Sultan, S.R.; Millar, S.A.; O’Sullivan, S.E.; England, T.J. A Systematic Review and Meta-Analysis of the In Vivo Haemodynamic Effects of Δ9-Tetrahydrocannabinol. Pharmaceuticals 2018, 11, 13.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Pharmaceuticals EISSN 1424-8247 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top