Next Article in Journal
Estimation of Stand Type Parameters and Land Cover Using Landsat-7 ETM Image: A Case Study from Turkey
Previous Article in Journal
Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring
Article Menu

Export Article

Open AccessArticle
Sensors 2008, 8(4), 2500-2508; doi:10.3390/s8042500

Improving Empirical Mode Decomposition Using Support Vector Machines for Multifocus Image Fusion

Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
*
Author to whom correspondence should be addressed.
Received: 3 March 2008 / Accepted: 31 March 2008 / Published: 8 April 2008
View Full-Text   |   Download PDF [2386 KB, uploaded 21 June 2014]   |  

Abstract

Empirical mode decomposition (EMD) is good at analyzing nonstationary and nonlinear signals while support vector machines (SVMs) are widely used for classification. In this paper, a combination of EMD and SVM is proposed as an improved method for fusing multifocus images. Experimental results show that the proposed method is superior to the fusion methods based on à-trous wavelet transform (AWT) and EMD in terms of quantitative analyses by Root Mean Squared Error (RMSE) and Mutual Information (MI). View Full-Text
Keywords: Multifocus Image Fusion; Empirical Mode Decomposition; ‘À-trous’ Wavelet Transform; Support Vector Machines Multifocus Image Fusion; Empirical Mode Decomposition; ‘À-trous’ Wavelet Transform; Support Vector Machines
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Chen, S.; Su, H.; Zhang, R.; Tian, J.; Yang, L. Improving Empirical Mode Decomposition Using Support Vector Machines for Multifocus Image Fusion. Sensors 2008, 8, 2500-2508.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top