Human Motor Noise Assessed by Electromagnetic Sensors and Its Relationship with the Degrees of Freedom Involved in Movement Control
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments and Procedure
2.3. Data Analysis and Reduction
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wallace, S.A. Dynamic pattern perspective of rhythmic movement: An introduction. In Advances in Motor Learning and Control; Zelaznik, H.N., Ed.; Human Kinetics: Champaign, IL, USA, 1996. [Google Scholar]
- Gray, R. Changes in Movement Coordination Associated with Skill Acquisition in Baseball Batting: Freezing/Freeing Degrees of Freedom and Functional Variability. Front. Psychol. 2020, 11, 1295. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.M. Functional Degrees of Freedom. Mot. Control 2006, 10, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Harbourne, R.T.; Stergiou, N. Movement Variability and the Use of Nonlinear Tools: Principles to Guide Physical Therapist Practice. Phys. Ther. 2009, 89, 267. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R.; Wheat, J.; Robins, M. Is movement variability important for sports biomechanists? Sport. Biomech. 2007, 6, 224–243. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, R.; Newell, K.M. Changing up the Routine Intervention-Induced Variability in Motor Learning. Exerc. Sport Sci. Rev. 2013, 41, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Barbado, D.; Caballero, C.; Moreside, J.; Vera-García, F.J.; Moreno, F.J. Can the structure of motor variability predict learning rate? J. Exp. Psychol. Hum. Percept. Perform. 2017, 43, 596–607. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, N.A. The Co-Ordination and Regulation of Movements; Pergamon Press: Oxford, UK, 1967. [Google Scholar]
- Ko, Y.G.; Challis, J.H.; Newell, K.M. Learning to coordinate redundant degrees of freedom in a dynamic balance task. Hum. Mov. Sci. 2003, 22, 47–66. [Google Scholar] [CrossRef]
- Latash, M.L. Stages in learning motor synergies: A view based on the equilibrium-point hypothesis. Hum. Mov. Sci. 2010, 29, 642–654. [Google Scholar] [CrossRef]
- Latash, M.L.; Scholz, J.P.; Schöner, G. Toward a New Theory of Motor Synergies. Mot. Control 2007, 11, 276–308. [Google Scholar] [CrossRef]
- Latash, M.L.; Scholz, J.P.; Schöner, G. Motor Control Strategies Revealed in the Structure of Motor Variability. Exerc. Sport Sci. Rev. 2002, 30, 26–31. [Google Scholar] [CrossRef]
- Domkin, D.; Laczko, J.; Djupsjöbacka, M.; Jaric, S.; Latash, M.L. Joint angle variability in 3D bimanual pointing: Uncontrolled manifold analysis. Exp. Brain Res. 2005, 163, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Glass, L.; Mackey, M. From Clocks to Chaos. The Rhythms of Life; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- Tsonis, A.A. Chaos: From Theory to Applications; Plenum Press: New York, NY, USA, 1992. [Google Scholar]
- Coffey, D.S. Self-organization, complexity and chaos: The new biology for medicine. Nat. Med. 1998, 4, 882–885. [Google Scholar] [CrossRef]
- Wu, H.G.; Miyamoto, Y.R.; Gonzalez Castro, L.N.; Ölveczky, B.P.; Smith, M.A. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat. Neurosci. 2014, 17, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef] [PubMed]
- Slifkin, A.B.; Newell, K.M. Variability and Noise in Continuous Force Production. J. Mot. Behav. 2010, 32, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, N.; Buzzi, U.H.; Kurz, M.J.; Heidel, J. Nonlinear Tools in Human Movement. In Innovative Analyses of Human Movement; Stergiou, N., Ed.; Human Kinetics: Champaign, IL, USA, 2004. [Google Scholar]
- Riley, M.A.; Turvey, M.T. Variability and determinism in motor behavior. J. Mot. Behav. 2002, 34, 99–125. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.J.; Caballero, C.; Barbado, D. Postural control strategies are revealed by the complexity of fractional components of COP. J. Neurophysiol. 2022, 127, 1289–1297. [Google Scholar] [CrossRef]
- Rhea, C.K.; Silver, T.A.; Hong, S.L.; Ryu, J.H.; Studenka, B.E.; Hughes, C.M.L.; Haddad, J.M. Noise and Complexity in Human Postural Control: Interpreting the Different Estimations of Entropy. PLoS ONE 2011, 6, e17696. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 266–272. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 82–87. [Google Scholar] [CrossRef]
- Lake, D.E.; Richman, J.S.; Pamela Griffin, M.; Randall Moorman, J. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol.—Regul. Integr. Comp. Physiol. 2002, 283, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Roerdink, M.; De Haart, M.; Daffertshofer, A.; Donker, S.F.; Geurts, A.C.H.; Beek, P.J. Dynamical structure of center-of-pressure trajectories in patients recovering from stroke. Exp. Brain Res. 2006, 174, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.; Newell, K. The structure of variability in human walking and running is speed-dependent. Exerc. Sport Sci. 2008, 36, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ivanov, P.C.; Hu, K.; Stanley, H.E. Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E—Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2002, 65, 15. [Google Scholar] [CrossRef] [PubMed]
- Davids, K.; Glazier, P.; Araújo, D.; Bartlett, R. Movement systems as dynamical systems: The functional role of variability and its implications for sports medicine. Sport. Med. 2003, 33, 245–260. [Google Scholar] [CrossRef]
- Zhou, J.; Manor, B.; Liu, D.; Hu, K.; Zhang, J.; Fang, J. The Complexity of Standing Postural Control in Older Adults: A Modified Detrended Fluctuation Analysis Based upon the Empirical Mode Decomposition Algorithm. PLoS ONE 2013, 8, e62585. [Google Scholar] [CrossRef]
- Stergiou, N.; Harbourne, R.T.; Cavanaugh, J.T. Optimal movement variability: A new theoretical perspective for neurologic physical therapy. J. Neurol. Phys. Ther. 2006, 30, 120–129. [Google Scholar] [CrossRef]
- Van Orden, G.C.; Kloos, H.; Wallot, S. Living in the Pink: Intentionality, Wellbeing, and Complexity. Philos. Complex Syst. 2011, 10, 629–672. [Google Scholar]
- Kodama, K.; Yasuda, K.; Yamagiwa, H. Constraints on Joint Degrees of Freedom Affect Human Postural Dynamics: A Pilot Study. In New Frontiers in Artificial Intelligence; Lecture Notes in Computer Science; LNAI; Springer: Cham, Switzerland, 2019; Volume 11717, pp. 447–460. [Google Scholar]
- Urbán, T.; Caballero, C.; Barbado, D.; Moreno, F.J. Do intentionality constraints shape the relationship between motor variability and performance? PLoS ONE 2019, 14, e0214237. [Google Scholar] [CrossRef] [PubMed]
- Washburn, A.; Coey, C.A.; Romero, V.; Malone, M.L.; Richardson, M.J. Interaction between intention and environmental constraints on the fractal dynamics of human performance. Cogn. Process. 2015, 16, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Ashner, L.; McCollum, G. The organization of human postural movements: A formal basis and experimental synthesis. Behav. Brain Sci. 1985, 8, 135–172. [Google Scholar] [CrossRef]
- Caballero, C.; Barbado, D.; Moreno, F.J. Non-linear tools and methodological concerns measuring human movement variability: An overview. Eur. J. Hum. Mov. 2014, 32, 61–81. [Google Scholar]
- Donker, S.F.; Roerdink, M.; Greven, A.J.; Beek, P.J. Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp. Brain Res. 2007, 181, 1–11. [Google Scholar] [CrossRef]
- Jiang, D.; Li, G.; Sun, Y.; Kong, J.; Tao, B.; Chen, D. Grip strength forecast and rehabilitative guidance based on adaptive neural fuzzy inference system using sEMG. Pers. Ubiquitous Comput. 2022, 26, 1215–1224. [Google Scholar] [CrossRef]
- Pethick, J.; Winter, S.L.; Burnley, M. Fatigue reduces the complexity of knee extensor torque during fatiguing sustained isometric contractions. Eur. J. Sport Sci. 2019, 19, 1349–1358. [Google Scholar] [CrossRef]
- Hollman, J.H.; Beise, N.J.; Fischer, M.L.; Stecklein, T.L. Hip extensor fatigue alters hip and knee coupling dynamics during single-limb step-downs: A randomized controlled trial. J. Biomech. 2020, 100, 109583. [Google Scholar] [CrossRef]
- Gates, D.; Dingwell, J. The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements. Exp. Brain Res. 2008, 187, 573–585. [Google Scholar] [CrossRef]
- Bauer, C.M.; Rast, F.M.; Ernst, M.J.; Meichtry, A.; Kool, J.; Rissanen, S.M.; Suni, J.; Kankaanpää, M. The effect of muscle fatigue and low back pain on lumbar movement variability and complexity. J. Electromyogr. Kinesiol. 2017, 33, 94–102. [Google Scholar] [CrossRef]
- Cowley, J.C.; Dingwell, J.B.; Gates, D.H. Effects of local and widespread muscle fatigue on movement timing. Exp. Brain Res. 2014, 232, 3939–3948. [Google Scholar] [CrossRef]
- Manor, B.; Costa, M.D.; Kun, H.; Newton, E.; Starobinets, O.; Hyun, G.K.; Peng, C.K.; Novak, V.; Lipsitz, L.A. Physiological complexity and system adaptability: Evidence from postural control dynamics of older adults. J. Appl. Physiol. 2010, 109, 1786–1791. [Google Scholar] [CrossRef]
- Needle, A.R.; Baumeister, J.; Kaminski, T.W.; Higginson, J.S.; Farquhar, W.B.; Swanik, C.B. Neuromechanical coupling in the regulation of muscle tone and joint stiffness. Scand. J. Med. Sci. Sport. 2014, 24, 737–748. [Google Scholar] [CrossRef]
HoS | ARelax | A90 | UpDown | Circle | |||
---|---|---|---|---|---|---|---|
Hip | Shoulder | Hand | |||||
SD | 0.004 ± 0.002 | 0.009 ± 0.009 | 0.011 ± 0.008 | 0.027 ± 0.015 | 0.043 ± 0.007 | 1.166 ± 1.317 | 0.567 ± 0.550 |
FE | 1.545 ± 0.207 | 1.064 ± 0.398 | 0.965 ± 0.483 | 0.544 ± 0.243 | 0.462 ± 0.085 | 0.152 ± 0.041 | 0.184 ± 0.081 |
DFA | 0.427 ± 0.080 | 0.583 ± 0.064 | 0.569 ± 0.082 | 0.486 ± 0.057 | 0.387 ± 0.042 | 0.875 ± 0.190 | 0.880 ± 0.244 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero, C.; Barbado, D.; Moreno, F.J. Human Motor Noise Assessed by Electromagnetic Sensors and Its Relationship with the Degrees of Freedom Involved in Movement Control. Sensors 2023, 23, 2256. https://doi.org/10.3390/s23042256
Caballero C, Barbado D, Moreno FJ. Human Motor Noise Assessed by Electromagnetic Sensors and Its Relationship with the Degrees of Freedom Involved in Movement Control. Sensors. 2023; 23(4):2256. https://doi.org/10.3390/s23042256
Chicago/Turabian StyleCaballero, Carla, David Barbado, and Francisco J. Moreno. 2023. "Human Motor Noise Assessed by Electromagnetic Sensors and Its Relationship with the Degrees of Freedom Involved in Movement Control" Sensors 23, no. 4: 2256. https://doi.org/10.3390/s23042256
APA StyleCaballero, C., Barbado, D., & Moreno, F. J. (2023). Human Motor Noise Assessed by Electromagnetic Sensors and Its Relationship with the Degrees of Freedom Involved in Movement Control. Sensors, 23(4), 2256. https://doi.org/10.3390/s23042256