The Investigation of Adoption of Voice-User Interface (VUI) in Smart Home Systems among Chinese Older Adults
Abstract
:1. Introduction
2. Literature Review
2.1. The Theoretical Models Related to Technology Adoption
2.2. Trust and Technology Adoption
2.3. Older Adults’ Technology Adoption
3. Hypothesis Development
3.1. VUI and Technology Acceptance Model
3.2. Trust and Technology Adoption
3.3. Perceived Physical Conditions
3.3.1. Perceived Physical Conditions
3.3.2. Mobile Self-Efficacy
3.3.3. Technology Anxiety
3.3.4. Self-Actualization Need
4. Research Methods
4.1. Sampling and Procedure
4.2. Measurement
4.3. Data Collection
5. Results
5.1. Reliability and Validity
5.2. Structural Model Assessment
5.3. Hypotheses Testing and Path Analysis
6. General Discussion
6.1. Practical Implications for Facilitating VUI Adoption
6.2. Practical Implications for Using VUI in Smart Home Systems
6.3. Limitations and Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Voice Search Statistics and Emerging Trends. Available online: https://www.dbswebsite.com/blog/trends-in-voice-search/ (accessed on 8 December 2021).
- Memon, A. Comprehensive Framework for Testing Graphical User Interfaces; University of Pittsburgh: Pittsburgh, PA, USA, 2001. [Google Scholar]
- Cohen, M.H.; Cohen, M.H.; Giangola, J.P.; Balogh, J. Voice User Interface Design; Addison-Wesley Professional: Boston, MA, USA, 2004. [Google Scholar]
- Harris, R.A. Voice Interaction Design: Crafting the New Conversational Speech Systems; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2005. [Google Scholar]
- Kim, J.S.; Lee, Y.; Kim, T.H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 2016, 199, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Trends in VUI. Available online: https://www.uptopcorp.com/blog/trends-in-vui/ (accessed on 8 December 2021).
- Vacher, M.; Caffiau, S.; Portet, F.; Meillon, B.; Roux, C.; Elias, E.; Lecouteux, B.; Chahuara, P. Evaluation of a context-aware voice interface for Ambient Assisted Living: Qualitative user study vs. quantitative system evaluation. ACM Trans. Access. Comput. 2015, 7, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Blair, J.; Abdullah, S. Understanding the needs and challenges of using conversational agents for deaf older adults. In Proceedings of the Conference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computing, Austin, TX, USA, 9–13 November 2019; pp. 161–165. [Google Scholar]
- Kowalski, J.; Jaskulska, A.; Skorupska, K.; Abramczuk, K.; Biele, C.; Kopeć, W.; Marasek, K. Older adults and voice interaction: A pilot study with google home. In Proceedings of the Extended Abstracts of the 2019 CHI Conference on human factors in computing systems, Glasgow Scotland, UK, 4–9 May 2019; pp. 1–6. [Google Scholar]
- Portet, F.; Vacher, M.; Golanski, C.; Roux, C.; Meillon, B.J.P.; Computing, U. Design and evaluation of a smart home voice interface for the elderly: Acceptability and objection aspects. Pers. Ubiquitous Comput. 2013, 17, 127–144. [Google Scholar] [CrossRef] [Green Version]
- Wulf, L.; Garschall, M.; Himmelsbach, J.; Tscheligi, M. Hands free-care free: Elderly people taking advantage of speech-only interaction. In Proceedings of the 8th Nordic Conference on Human-Computer Interaction: Fun, Fast, Foundational, Helsinki, Finland, 26–30 October 2014; pp. 203–206. [Google Scholar]
- It Is Estimated That in the 14th Five-Year Plan, China’s Elderly Population Will Exceed 300 Million, Entering a Moderately Aging Population. Available online: https://www.chinanews.com/gn/2021/03-16/9433127.shtml (accessed on 8 December 2021).
- Demiris, G.; Thompson, H.; Boquet, J.; Le, T.; Chaudhuri, S.; Chung, J. Older adults’ acceptance of a community-based telehealth wellness system. Inform. Health Soc. Care 2013, 38, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Lu, H. Adoption of e-government services: An empirical study of the online tax filing system in Taiwan. Online Inf. Rev. 2013, 37, 424–442. [Google Scholar] [CrossRef]
- Yang, H.L.; Hsiao, S.L. Mechanisms of developing innovative IT-enabled services: A case study of Taiwanese healthcare service. Technovation 2009, 29, 327–337. [Google Scholar] [CrossRef]
- Gilly, M.C.; Zeithaml, V.A. The elderly consumer and adoption of technologies. J. Consum. Res. 1985, 12, 353–357. [Google Scholar] [CrossRef]
- Morris, M.G.; Venkatesh, V.; Ackerman, P.L. Gender and age differences in employee decisions about new technology: An extension to the theory of planned behavior. IEEE Trans. Eng. Manag. 2005, 52, 69–84. [Google Scholar] [CrossRef] [Green Version]
- Morris, M.G.; Venkatesh, V. Age differences in technology adoption decisions: Implications for a changing work force. Pers. Psychol. 2000, 53, 375–403. [Google Scholar] [CrossRef] [Green Version]
- Phillips, L.W.; Sternthal, B. Age differences in information processing: A perspective on the aged consumer. J. Mark. Res. 1977, 14, 444–457. [Google Scholar] [CrossRef]
- Vaportzis, E.; Giatsi Clausen, M.; Gow, A.J. Older adults perceptions of technology and barriers to interacting with tablet computers: A focus group study. Front. Psychol. 2017, 8, 1687. [Google Scholar] [CrossRef] [Green Version]
- Harrison, A.W.; Rainer, R.K., Jr. The influence of individual differences on skill in end-user computing. J. Manag. Inf. Syst. 1992, 9, 93–111. [Google Scholar] [CrossRef]
- Majchrzak, A.; Cotton, J. A longitudinal study of adjustment to technological change: From mass to computer-automated batch production. J. Occup. Psychol. 1988, 61, 43–66. [Google Scholar] [CrossRef]
- Kohlbacher, F.; Hang, C.C. Applying the disruptive innovation framework to the silver market. Ageing Int. 2011, 36, 82–101. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations, 4th ed.; The Free Press: New York, NY, USA, 1995. [Google Scholar]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of. Inf. Technol. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Bala, H. Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Zhang, X. Unified theory of acceptance and use of technology: US vs. China. J. Glob. Inf. Technol. Manag. 2010, 13, 5–27. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Robert, G.; Macfarlane, F.; Bate, P.; Kyriakidou, O. Diffusion of innovations in service organizations: Systematic review and recommendations. Milbank Q. 2004, 82, 581–629. [Google Scholar] [CrossRef] [Green Version]
- Chuttur, M.Y. Overview of the technology acceptance model: Origins, developments and future directions. Work. Pap. Inf. Syst. 2009, 9, 9–37. [Google Scholar]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Lowe, B.; Dwivedi, Y.K.; d’Alessandro, S. Consumers and technology in a changing world. Eur. J. Mark. 2019, 53, 1038–1050. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, P. The role of moderating factors in user technology acceptance. Int. J. Hum. -Comput. Stud. 2006, 64, 53–78. [Google Scholar] [CrossRef] [Green Version]
- Mclean, G.; Osei-Frimpong, K. Hey Alexa… Examine the variables influencing the use of Artificial Intelligent In-home Voice Assistants. Comput. Hum. Behav. 2019, 99, 28–37. [Google Scholar] [CrossRef]
- Hernández-Ortega, B. The role of post-use trust in the acceptance of a technology: Drivers and consequences. Technovation 2011, 31, 523–524. [Google Scholar] [CrossRef]
- Verdegem, P.; De Marez, L. Rethinking determinants of ICT acceptance: Towards an integrated and comprehensive overview. Technovation 2011, 31, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Zhao, Y.; Zhu, Q.; Tan, X.; Zheng, H. A meta-analysis of the impact of trust on technology acceptance model: Investigation of moderating influence of subject and context type. Int. J. Inf. Manag. 2011, 31, 572–581. [Google Scholar] [CrossRef]
- Wu, H.; Gai, J.; Wang, Y.; Liu, J.; Qiu, J.; Wang, J.; Zhang, X. Influence of cultural factors on freehand gesture design. Int. J. Hum. -Comput. Stud. 2020, 143, 102502. [Google Scholar] [CrossRef]
- Fernandes, T.; Oliveira, E. Understanding consumers’ acceptance of automated technologies in service encounters: Drivers of digital voice assistants adoption. J. Bus. Res. 2021, 122, 180–191. [Google Scholar] [CrossRef]
- Nguyen, Q.N.; Ta, A.; Prybutok, V. An integrated model of voice-user interface continuance intention: The gender effect. Int. J. Hum. –Comput. Interact. 2019, 35, 1362–1377. [Google Scholar] [CrossRef]
- Choi, J.K.; Ji, Y.G. Investigating the importance of trust on adopting an autonomous vehicle. Int. J. Hum. -Comput. Interact. 2015, 31, 692–702. [Google Scholar] [CrossRef]
- Hansen, J.M.; Saridakis, G.; Benson, V. Risk, trust, and the interaction of perceived ease of use and behavioral control in predicting consumers’ use of social media for transactions. Comput. Hum. Behav. 2018, 80, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Normark, C.J. Design and evaluation of a touch-based personalizable in-vehicle user interface. Int. J. Hum. -Comput. Interact. 2015, 31, 731–745. [Google Scholar] [CrossRef]
- Vance, A.; Elie-Dit-Cosaque, C.; Straub, D.W. Examining trust in information technology artifacts: The effects of system quality and culture. J. Manag. Inf. Syst. 2008, 24, 73–100. [Google Scholar] [CrossRef] [Green Version]
- Casaló, L.V.; Cisneros, J. An empirical test of the multiplicative effect of usability on consumer trust and satisfaction. In Proceedings of the 2008 19th International Workshop on Database and Expert Systems Applications, Turin, Italy, 1–5 September 2008; pp. 439–443. [Google Scholar]
- Mayer, R.C.; Davis, J.H.; Schoorman, F.D. An integrative model of organizational trust. Acad. Manag. Rev. 1995, 20, 709–734. [Google Scholar] [CrossRef]
- Mcknight, D.H.; Carter, M.; Thatcher, J.B.; Clay, P.F. Trust in a specific technology: An investigation of its components and measures. ACM Trans. Manag. Inf. Syst. 2011, 2, 1–25. [Google Scholar] [CrossRef]
- Gefen, D. E-commerce: The role of familiarity and trust. Omega 2000, 28, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Griffin, A. Google Voice Search Records and Keeps Conversations People Have around Their Phones—But the Files Can Be Deleted Retrieved. Available online: https://www.independent.co.uk/life-style/gadgets-and-tech/news/google-voice-search-records-stores-conversationpeople-have-around-their-phones-but-files-can-be-a7059376.html (accessed on 8 December 2021).
- Siegel, B. How Voice Recognition Will Affect Privacy in the Internet of Things. Available online: http://www.cio.com/article/3140633/privacy/how-voice-recognition-will-affect-privacy-and-the-internet-of-things.html (accessed on 8 December 2021).
- Ha, S.; Stoel, L. Consumer e-shopping acceptance: Antecedents in a technology acceptance model. J. Bus. Res. 2009, 62, 565–571. [Google Scholar] [CrossRef]
- Akbari, M.; Rezvani, A.; Shahriari, E.; Zúñiga, M.A.; Pouladian, H. Acceptance of 5 G technology: Mediation role of Trust and Concentration. J. Eng. Technol. Manag. 2020, 57, 101585. [Google Scholar] [CrossRef]
- Grabner-Kräuter, S.; Faullant, R. Consumer acceptance of internet banking: The influence of internet trust. Int. J. Bank Mark. 2008, 26, 483–504. [Google Scholar] [CrossRef]
- Sana’a, Y. A critical review of models and theories in field of individual acceptance of technology. Int. J. Hybrid Inf. Technol. 2016, 9, 143–158. [Google Scholar]
- Bitterman, N.; Shalev, I. The silver surfer: Making the internet usable for seniors. Ergon. Des. 2004, 12, 24–28. [Google Scholar] [CrossRef]
- Charness, N.; Holley, P. The new media and older adults: Usable and useful? Am. Behav. Sci. 2004, 48, 416–433. [Google Scholar] [CrossRef]
- Al-Gahtani, S.S.; King, M. Attitudes, satisfaction and usage: Factors contributing to each in the acceptance of information technology. Behav. Inf. Technol. 1999, 18, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Kelley, L.; Morrell, R.W.; Park, D.C.; Mayhorn, C.B. Predictors of electronic bulletin board system use in older adults. Educ. Gerontol. 1999, 25, 19–35. [Google Scholar]
- Presno, C. Taking the byte out of Internet anxiety: Instructional techniques that reduce computer/Internet anxiety in the classroom. J. Educ. Comput. Res. 1998, 18, 147–161. [Google Scholar] [CrossRef]
- Chen, K.; Chan, A.H.S. Gerontechnology acceptance by elderly Hong Kong Chinese: A senior technology acceptance model (STAM). Ergonomics 2014, 57, 635–652. [Google Scholar] [CrossRef]
- Deng, Z.; Mo, X.; Liu, S. Comparison of the middle-aged and older users’ adoption of mobile health services in China. Int. J. Med. Inform. 2014, 83, 210–224. [Google Scholar] [CrossRef]
- Or, C.K.; Karsh, B.-T.; Severtson, D.J.; Burke, L.J.; Brown, R.L.; Brennan, P.F. Factors affecting home care patients’ acceptance of a web-based interactive self-management technology. J. Am. Med. Inform. Assoc. 2011, 18, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Kim, K.J. User acceptance of long-term evolution (LTE) services: An application of extended technology acceptance model. Program 2013, 47, 188–205. [Google Scholar] [CrossRef]
- Ryu, M.H.; Kim, S.; Lee, E. Understanding the factors affecting online elderly user’s participation in video UCC services. Comput. Hum. Behav. 2009, 25, 619–632. [Google Scholar] [CrossRef]
- Yang, H.; Yu, J.; Zo, H.; Choi, M. User acceptance of wearable devices: An extended perspective of perceived value. Telemat. Inform. 2016, 33, 256–269. [Google Scholar] [CrossRef]
- Hoy, M.B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med. Ref. Serv. Q. 2018, 37, 81–88. [Google Scholar] [CrossRef]
- Hornbæk, K.; Hertzum, M. Technology acceptance and user experience: A review of the experiential component in HCI. ACM Trans. Comput. -Hum. Interact. 2017, 24, 1–30. [Google Scholar] [CrossRef]
- Abdullah, F.; Ward, R.; Ahmed, E. Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Comput. Hum. Behav. 2016, 63, 75–90. [Google Scholar] [CrossRef]
- Sonstroem, R.J.; Speliotis, E.D.; Fava, J.L. Perceived physical competence in adults: An examination of the Physical Self-Perception Profile. J. Sport Exerc. Psychol. 1992, 14, 207–221. [Google Scholar] [CrossRef]
- Mathur, A.; Moschis, G.P. Antecedents of cognitive age: A replication and extension. Psychol. Mark. Theory 2005, 22, 969–994. [Google Scholar] [CrossRef]
- Moschis, G.P. Marketing to Older Consumers: A Handbook of Information for Strategy Development; Quorum Books: Westport, CT, USA, 1992. [Google Scholar]
- Phang, C.W.; Sutanto, J.; Kankanhalli, A.; Li, Y.; Tan, B.C.; Teo, H.H. Senior citizens’ acceptance of information systems: A study in the context of e-government services. IEEE Trans. Eng. Manag. 2006, 53, 555–569. [Google Scholar] [CrossRef]
- Li, J.; Ma, Q.; Chan, A.H.; Man, S. Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Appl. Ergon. 2019, 75, 162–169. [Google Scholar] [CrossRef]
- Xue, L.; Yen, C.C.; Chang, L.; Chan, H.C.; Tai, B.C.; Tan, S.B.; Duh, H.B.L.; Choolani, M. An exploratory study of ageing women’s perception on access to health informatics via a mobile phone-based intervention. Int. J. Med. Inform. 2012, 81, 637–648. [Google Scholar] [CrossRef]
- Keith, M.J.; Babb Jr, J.S.; Furner, C.P.; Abdullat, A. The role of mobile self-efficacy in the adoption of location-based applications: An iPhone experiment. In Proceedings of the 2011 44th Hawaii International Conference on System Sciences, Kauai, HI, USA, 4–7 January 2011; pp. 1–10. [Google Scholar]
- Hawthorn, D. Interface design and engagement with older people. Behav. Inf. Technol. 2007, 26, 333–341. [Google Scholar] [CrossRef]
- Laganà, L. Enhancing the attitudes and self-efficacy of older adults toward computers and the internet: Results of a pilot study. Educ. Gerontol. 2008, 34, 831–843. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.E.; Walczak, S. Cognitive engagement with a multimedia ERP training tool: Assessing computer self-efficacy and technology acceptance. Inf. Manag. 2009, 46, 221–232. [Google Scholar] [CrossRef]
- Kim, D.; Lee, H. Effects of user experience on user resistance to change to the voice user interface of an in-vehicle infotainment system: Implications for platform and standards competition. Int. J. Inf. Manag. 2016, 36, 653–667. [Google Scholar] [CrossRef] [Green Version]
- Hasan, B.; Ahmed, M.U. A path analysis of the impact of application-specific perceptions of computer self-efficacy and anxiety on technology acceptance. J. Organ. End User Comput. 2010, 22, 82–95. [Google Scholar] [CrossRef] [Green Version]
- Czaja, S.J.; Charness, N.; Fisk, A.D.; Hertzog, C.; Nair, S.N.; Rogers, W.A.; Sharit, J. Factors predicting the use of technology: Findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE). Psychol. Aging 2006, 21, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.J.; Im, E.O. A path analysis of Internet health information seeking behaviors among older adults. Geriatr. Nurs. 2014, 35, 137–141. [Google Scholar] [CrossRef]
- Guo, X.; Sun, Y.; Wang, N.; Peng, Z.; Yan, Z. The dark side of elderly acceptance of preventive mobile health services in China. Electron. Mark. 2013, 23, 49–61. [Google Scholar] [CrossRef]
- Or, C.K.; Karsh, B.T. A systematic review of patient acceptance of consumer health information technology. J. Am. Med. Inform. Assoc. 2009, 16, 550–560. [Google Scholar] [CrossRef] [Green Version]
- Tsai, T.H.; Lin, W.Y.; Chang, Y.S.; Chang, P.C.; Lee, M.Y. Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults. PLoS ONE 2020, 15, e0227270. [Google Scholar] [CrossRef] [Green Version]
- Maslow, A.H. A Theory of Human Motivation. Psychol. Rev. 1943, 50, 370–396. [Google Scholar] [CrossRef] [Green Version]
- Heylighen, F. A cognitive-systemic reconstruction of Maslow’s theory of self-actualization. Behav. Sci. 1992, 37, 39–58. [Google Scholar] [CrossRef]
- Erikson, E.H.; Erikson, J.M.; Kivnick, H. Vital Involvement in Old Age: The Experience of Old Age in Our Time; Norton: New York, NY, USA, 1986. [Google Scholar]
- Talukder, M.S.; Sorwar, G.; Bao, Y.; Ahmed, J.U.; Palash, M.A.S. Predicting antecedents of wearable healthcare technology acceptance by elderly: A combined SEM-Neural Network approach. Technol. Forecast. Soc. Chang. 2020, 150, 119793. [Google Scholar] [CrossRef]
- Wang, H.; Tao, D.; Yu, N.; Qu, X. Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF. Int. J. Med. Inform. 2020, 139, 104156. [Google Scholar] [CrossRef]
- Wu, L.H.; Wu, L.C.; Chang, S.C. Exploring consumers’ intention to accept smartwatch. Comput. Hum. Behav. 2016, 64, 383–392. [Google Scholar] [CrossRef]
- Lee, J.D.; Kirlik, A.; Dainoff, M.J. The Oxford Handbook of Cognitive Engineering; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Pan, S.; Jordan-Marsh, M. Internet use intention and adoption among chinese older adults: From the expanded technology acceptance model perspective. Comput. Hum. Behav. 2010, 26, 1111–1119. [Google Scholar] [CrossRef]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.C.; Benbasat, I. Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef] [Green Version]
- Alves-Guerreiro, J. Measuring health—A guide to rating scales and questionnaires. Am. J. Geriatr. Psychiatry 1998, 5, 183. [Google Scholar] [CrossRef]
- Chang, V.; Wang, Y.; Wills, G. Research investigations on the use or non-use of hearing aids in the smart cities. Technol. Forecast. Soc. Change 2020, 153, 119231. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Taber, K.S. The use of Cronbach’s alpha when developing and reporting research instruments in science education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Structural equation models with unobservable variables and measurement error: Algebra and statistics. J. Mark. Res. 1981, 18, 382–388. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A New Criterion for Assessing Discriminant Validity in Variance-based Structural Equation Modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Gerbing, D.W.; Anderson, J.C. An updated paradigm for scale development incorporating unidimensionality and its assessment. J. Mark. Res. 1988, 25, 186–192. [Google Scholar] [CrossRef]
- Shiller, R.J. From efficient markets theory to behavioral finance. J. Econ. Perspect. 2003, 17, 83–104. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Fabrigar, L.R.; Wegener, D.T.; Maccallum, R.C.; Strahan, E.J. Evaluating the use of exploratory factor analysis in psychological research. Psychol. Methods 1999, 4, 272. [Google Scholar] [CrossRef]
- Warkentin, M.; Gefen, D.; Pavlou, P.A.; Rose, G.M. Encouraging citizen adoption of e-government by building trust. Electron. Mark. 2002, 12, 157–162. [Google Scholar] [CrossRef]
- Conci, M.; Pianesi, F.; Zancanaro, M. Useful, social and enjoyable: Mobile phone adoption by older people. In IFIP Conference on Human-Computer Interaction; Springer: Heidelberg/Berlin, Germany, 2009; pp. 63–76. [Google Scholar]
- Zhou, J.; Rau, P.L.P.; Salvendy, G. Older adults’ use of smart phones: An investigation of the factors influencing the acceptance of new functions. Behav. Inf. Technol. 2014, 33, 552–560. [Google Scholar] [CrossRef]
- China Internet Network Information Center. Statistical Report on Internet Development in China; CNNIC. 2019. Available online: https://www.cnnic.com.cn/IDR/ReportDownloads/201911/P020191112539794960687.pdf (accessed on 8 December 2021).
Construct | Measurement Item | References |
---|---|---|
Behavior Intention (BI) | BI1: I predict I would use voice interaction in my smartphone to conduct tasks. | [94] |
BI2: In the future, I will often use voice interaction to manage my smartphone. | ||
Perceived Usefulness (PU) | PU1: I think that using a voice interface increases productivity. | [95,96] |
PU2: I think that a voice interface is useful. | ||
PU3: Using a voice interface would make my life convenient. | ||
Perceived Ease of Use (PEOU) | PEOU1: It would be easy for me to become skillful at using a voice interface. | [95] |
PEOU2: It would be easy for me to use voice interaction in the way I like to. | ||
PEOU3: Leaning to use voice interaction is entirely within my capability. | ||
Trust (TRU) | TRU1: I trust that my personal information will not be used for any other purpose. | [40] |
TRU2: I believe that my personal information is protected. | ||
TRU3: I am assured that my information is secure. | ||
Perceived Physical Conditions (PPC) | PPC1: How is your hearing? | [97] |
PPC2: How is your vision? | ||
PPC3: How is your mobility ability? | ||
Mobile Self-Efficacy (SE) | SE1: I am fluent in the use of a mobile device. | [75] |
SE2: I can figure out almost any mobile application with a minimum of effort. | ||
SE3: I feel I am able to use the mobile internet to browse the world wide web. | ||
Technology Anxiety (TA) | TA1: Using voice interaction would make me very nervous. | [31] |
TA2: Using voice interaction would make me worried. | ||
TA3: Using voice interaction would make me feel uncomfortable. | ||
TA4: Using voice interaction would make me feel uneasily unconfused. | ||
Self-actualization needs (SA) | SA1: Learning to use voice interaction increases my feeling of self-fulfillment. | [72] |
SA2: Learning to use voice interaction gives me a feeling of accomplishment. |
Characteristics | Frequency | Percentage (%) | |
---|---|---|---|
Age | 55–59 | 216 | 51.4% |
60–64 | 160 | 38.1% | |
65–69 | 30 | 7% | |
Above 70 | 14 | 3.5% | |
Gender | Male | 210 | 50% |
Female | 210 | 50% | |
Education | Elementary | 7 | 1.7% |
Junior High School | 51 | 12.1% | |
High School | 134 | 31.9% | |
College/university | 216 | 51.4% | |
Postgraduate | 12 | 2.9% | |
Income | Below 50 k RMB | 63 | 15% |
50 k–10 k RMB | 117 | 27.9% | |
10 k–15 k RMB | 88 | 21% | |
15 k–20 k RMB | 88 | 21% | |
20 k–30 k RMB | 52 | 12.4% | |
Above 30 k RMB | 12 | 2.9% |
Construct | Variables | Cronbach’s Alpha | Standardized Loading | C.R/t-Value. | AVE | Composite Reliability |
---|---|---|---|---|---|---|
BI | BI1 | 0.786 | 0.813 | - | 0.649 | 0.787 |
BI2 | 0.798 | 17.376 | ||||
PU | PU1 | 0.755 | 0.742 | - | 0.509 | 0.756 |
PU2 | 0.705 | 13.035 | ||||
PU3 | 0.692 | 12.814 | ||||
PEOU | PEOU1 | 0.747 | 0.733 | - | 0.547 | 0.783 |
PEOU2 | 0.747 | 12.648 | ||||
PEOU3 | 0.739 | 12.549 | ||||
TRU | TRU1 | 0.875 | 0.875 | - | 0.708 | 0.879 |
TRU2 | 0.768 | 18.5 | ||||
TRU3 | 0.877 | 22.132 | ||||
PPC | PPC1 | 0.641 | 0.753 | - | 0.444 | 0.700 |
PPC2 | 0.703 | 6.286 | ||||
PPC3 | 0.521 | 5.637 | ||||
SE | SE1 | 0.833 | 0.752 | - | 0.633 | 0.838 |
SE2 | 0.828 | 16.006 | ||||
SE3 | 0.806 | 15.687 | ||||
TA | TA1 | 0.950 | 0.926 | - | 0.826 | 0.950 |
TA2 | 0.921 | 32.861 | ||||
TA3 | 0.883 | 29.25 | ||||
TA4 | 0.905 | 31.302 | ||||
SA | SA1 | 0.763 | 0.733 | - | 0.623 | 0.767 |
SA2 | 0.842 | 14.013 |
PPC | SE | TA | SA | TRU | PU | PEOU | BI | |
---|---|---|---|---|---|---|---|---|
PPC | 0.667 | |||||||
SE | 0.499 | 0.796 | ||||||
TA | −0.009 | 0.153 | 0.909 | |||||
SA | 0.360 | 0.411 | −0.086 | 0.789 | ||||
TRU | 0.378 | 0.563 | 0.105 | 0.610 | 0.841 | |||
PU | 0.340 | 0.347 | −0.177 | 0.734 | 0.439 | 0.713 | ||
PEOU | 0.441 | 0.697 | −0.057 | 0.658 | 0.672 | 0.683 | 0.740 | |
BI | 0.405 | 0.523 | −0.115 | 0.764 | 0.610 | 0.853 | 0.840 | 0.806 |
PPC | SE | TA | SA | TRU | PU | PEOU | BI | |
---|---|---|---|---|---|---|---|---|
PPC | - | |||||||
SE | 0.556 | - | ||||||
TA | 0.015 | 0.153 | - | |||||
SA | 0.405 | 0.403 | 0.081 | - | ||||
TRU | 0.415 | 0.575 | 0.096 | 0.644 | - | |||
PU | 0.397 | 0.340 | 0.177 | 0.720 | 0.437 | - | ||
PEOU | 0.520 | 0.726 | 0.058 | 0.693 | 0.729 | 0.712 | - | |
BI | 0.444 | 0.525 | 0.115 | 0.757 | 0.622 | 0.852 | 0.881 | - |
Category | Measure | Acceptable Values | Value |
---|---|---|---|
Absolute fit indices | Chi-square/d.f. | 1–5 | 2.248 |
GFI | 0.90 or above | 0.913 | |
SRMR | 0.08 or below [106] | 0.065 | |
RMSEA | 0.08 or below [107] | 0.055 | |
NFI | 0.90 or above | 0.920 | |
Incremental fit indices | IFI | 0.90 or above | 0.954 |
TLI | 0.90 or above | 0.942 | |
CFI | 0.90 or above | 0.953 |
Path Direction | Path Coefficients | p-Value | Results | |
---|---|---|---|---|
H1-1 | PU → BI | 0.655 | *** | Supported |
H1-2 | PEOU → BI | 0.458 | *** | Supported |
H1-3 | PEOU → PU | 0.595 | *** | Supported |
H2 | TRU → BI | 0.068 | 0.028 ** | Supported |
H3-1 | PPC → PEOU | 0.015 | 0.209 | Not supported |
H3-2 | PPC → PU | 0.078 | 0.277 | Not supported |
H4-1 | SE → PEOU | 0.407 | *** | Supported |
H4-2 | SE → PU | −0.216 | 0.005 ** | Supported |
H4-3 | SE → TRU | 0.735 | *** | Supported |
H5-1 | TA → PEOU | −0.019 | 0.090 * | Partially supported |
H5-2 | TA → PU | −0.015 | 0.188 | Not supported |
H6-1 | SA → PEOU | 0.367 | *** | Supported |
H6-2 | SA → PU | 0.332 | *** | Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Yang, Y.; Cheng, P. The Investigation of Adoption of Voice-User Interface (VUI) in Smart Home Systems among Chinese Older Adults. Sensors 2022, 22, 1614. https://doi.org/10.3390/s22041614
Song Y, Yang Y, Cheng P. The Investigation of Adoption of Voice-User Interface (VUI) in Smart Home Systems among Chinese Older Adults. Sensors. 2022; 22(4):1614. https://doi.org/10.3390/s22041614
Chicago/Turabian StyleSong, Yao, Yanpu Yang, and Peiyao Cheng. 2022. "The Investigation of Adoption of Voice-User Interface (VUI) in Smart Home Systems among Chinese Older Adults" Sensors 22, no. 4: 1614. https://doi.org/10.3390/s22041614