Dairy Cattle Rumen Bolus Developments with Special Regard to the Applicable Artificial Intelligence (AI) Methods
Abstract
:1. Introduction
2. Areas of Application of Rumen Boluses
3. Sensors Used in Boluses and for Related Experiments
4. Data Transfer Solutions
5. Data Processing and Artificial Intelligence Methods
- Animal data should be extracted from the primarily measured sensory signal series.
- Often, the measurement is not taken with the optimal sensor according to the measured characteristic, which makes the evaluation difficult.
- It has to learn the individual characteristics of each animal.
- Deviations from the individual characteristics of the animals are detected.
- Based on the detected deviations, they can start a special measurement program, and send a notification or alert.
- They can set up a holistic model, based on the differences from the individual’s base level.
- Experience should be continuously incorporated into the system, so the number of erroneous evaluations may decrease over time.
5.1. Artificial Intelligence Methods Used in Cattle Sensor Papers
5.2. Sampling and Preprocessing
- Determination of the derivative of the accelerations per axis (jerk).
- Calculation of the resultant jerk. After this step, the main movement activities can be observed on the graph of the preprocessed values.
- Additional data-cleaning methods (variance calculation and moving average calculation). This step is required to make further processing more robust.
- Quantifying the preprocessing data with the appropriate metrics.
5.3. First-Level Data Processing
5.4. Secondary-Level Data Processing
5.5. Holistic Data Processing
5.6. Systematic Review on Cattle Bolus Artificial Intelligence Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knight, C.H. Review: Sensor techniques in ruminants: More than fitness trackers. Animal 2020, 14, S187–S195. [Google Scholar] [CrossRef] [PubMed]
- Khanal, A.R.; Gillespie, J.; MacDonald, J. Adoption of technology, management practices, and production systems in US milk production. J. Dairy Sci. 2010, 93, 6012–6022. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, W.; Morita, N.; Nagata, M.P.B. 14-IoT sensors for smart livestock management. In Chemical, Gas, and Biosensors for Internet of Things and Related Applications; Mitsubayashi, K., Niwa, O., Ueno, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–221. [Google Scholar] [CrossRef]
- el Bilali, H.; Bottalico, F.; Palmisano, G.O.; Capone, R. Information and Communication Technologies for Smart and Sustainable Agriculture. In Scientific-Experts Conference of Agriculture and Food Industry; Springer: Cham, Switzerland, 2020; Volume 78. [Google Scholar] [CrossRef]
- Alsaaod, M.; Christoph, R.; Jens, K.; Kathrin, H.; Rose-Meierhöferc, S.; Plümerb, L.; Wolfgang, B. Electronic detection of lameness in dairy cows through measuring pedometric activity and lying behavior. Appl. Anim. Behav. Sci. 2012, 142, 134–141. [Google Scholar] [CrossRef]
- Campos, D.P.; Abatti, P.J.; Bertotti, F.L.; Hill, J.A.G.; da Silveira, A.L.F. Surface electromyography segmentation and feature extraction for ingestive behavior recognition in ruminants. Comput. Electron. Agric. 2018, 153, 325–333. [Google Scholar] [CrossRef]
- Hamilton, A.W.; Davison, C.; Tachtatzis, C.; Andonovic, I.; Michie, C.; Ferguson, H.J.; Somerville, L.; Jonsson, N.N. Identification of the Rumination in Cattle Using Support Vector Machines with Motion-Sensitive Bolus Sensors. Sensors 2019, 19, 1165. [Google Scholar] [CrossRef]
- Kovács, L.; Jurkovich, V.; Bakony, M.; Szenci, O.; Póti, P.; Tőzsér, J. Welfare implication of measuring heart rate and heart rate variability in dairy cattle: Literature review and conclusions for future research. Animal 2014, 8, 316–330. [Google Scholar] [CrossRef]
- Mottram, T.; Lowe, J.; McGowan, M.; Phillips, N. Technical note: A wireless telemetric method of monitoring clinical acidosis in dairy cows. Comput. Electron. Agric. 2008, 64, 45–48. [Google Scholar] [CrossRef]
- Bhattacharya, N.A.; Warner, R.G. Influence of Varying Rumen Temperature on Central Cooling or Warming and on Regulation of Voluntary Feed Intake in Dairy Cattle. J. Dairy Sci. 1968, 51, 1481–1489. [Google Scholar] [CrossRef]
- Swartz, T.H.; McGilliard, M.L.; Petersson-Wolfe, C.S. Technical note: The use of an accelerometer for measuring step activity and lying behaviors in dairy calves. J. Dairy Sci. 2016, 99, 9109–9113. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, J.; Nogami, H.; Okada, H.; Itoh, T.; Arai, S. Solid-state pH sensor prototype for real-time monitoring of the rumen pH value of Japanese cows. Microsyst. Technol. 2018, 24, 457–463. [Google Scholar] [CrossRef]
- Ramadhan, A.; Arymurthy, A.M.; Sensuse, D.I.; Muladno. Modeling e-Livestock Indonesia. Heliyon 2021, 7, e07754. [Google Scholar] [CrossRef]
- Alzahal, O.; Steele, M.A.; Valdes, E.V.; Mcbride, B.W. Technical note: The use of a telemetric system to continuously monitor ruminal temperature and to predict ruminal pH in cattle. J. Dairy Sci. 2009, 92, 5697–5701. [Google Scholar] [CrossRef]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M. Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef] [PubMed]
- Lees, A.M. Evaluating rumen temperature as an estimate of core body temperature in Angus feedlot cattle during summer. Int. J. Biometeorol. 2019, 63, 939–974. [Google Scholar] [CrossRef] [PubMed]
- ANB. Available online: http://www.anbsensors.com/rumen-bolus-ph-sensor/ (accessed on 1 August 2022).
- Wolf-Hound. Available online: https://wolf-hound.com/ (accessed on 1 August 2022).
- SmaxTec. Available online: https://smaxtec.com/en/smaxtec-system-in-detail/ (accessed on 1 August 2022).
- Allen, M.S. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J. Dairy Sci. 1997, 80, 1447–1462. [Google Scholar] [CrossRef]
- Zebeli, Q.; Dijkstra, J.; Tafaj, M.; Steingass, H.; Ametaj, B.N.; Drochner, W. Modeling the adequacy of dietary fiber in dairy cows based on the responses of ruminal pH and milk fat production to composition of the diet. J. Dairy Sci. 2008, 91, 2046–2066. [Google Scholar] [CrossRef]
- Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; McBride, B.W. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef]
- Penner, G.B.; Aschenbach, J.R.; Gabel, G.; Oba, M. Evaluation of a continuous ruminal pH measurement system for use in noncannulated small ruminants. J. Anim. Sci. 2009, 87, 2363–2366. [Google Scholar] [CrossRef]
- Johnson, V.W.; Sutton, J.D. The continuous recording of the pH in the bovine rumen. Br. J. Nutr. 1968, 22, 303–306. [Google Scholar] [CrossRef]
- Khol-Parisini, A.; Humer, E.; Sizmaz, Ö.; Abdel-Raheem, S.M.; Gruber, L.; Gasteiner, J.; Zebeli, Q. Ruminal disappearance of phosphorus and starch, reticuloruminal pH and total tract nutrient digestibility in dairy cows fed diets differing in grain processing. Anim. Feed Sci. Technol. 2015, 210, 74–85. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Ruff, F.; Szenci, O. Rumination time and reticuloruminal temperature as possible predictors of dystocia in dairy cows. J. Dairy Sci. 2017, 100, 1568–1579. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Nagata, R.; Ohkubo, A.; Ohtani, N.; Kushibiki, S.; Ichijo, T.; Sato, S. Changes in ruminal and reticular pH and bacterial communities in Holstein cattle fed a high-grain diet. BMC Vet. Res. 2018, 14, 310. [Google Scholar] [CrossRef]
- Falk, M.; Münger, A.; Dohme-Meier, F. A comparison of reticular and ruminal pH monitored continuously with 2 measurement systems at different weeks of early lactation. J. Dairy Sci. 2016, 99, 1951–1955. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, V.; Humer, E.; Kröger, I.; Braid, T.; Wagner, M.; Zebeli, Q. Differences between pH of indwelling sensors and the pH of fluid and solid phase in the rumen of dairy cows fed varying concentrate levels. J. Anim. Physiol. Anim. Nutr. 2018, 102, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Villot, C.; Meunier, B.; Bodin, J.; Martin, C.; Silberberg, M. Relative reticulo-rumen pH indicators for subacute ruminal acidosis detection in dairy cows. Animal 2018, 12, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Zschiesche, M.; Mensching, A.; Jansen, H.M.; Sharifi, A.R.; Albers, D.; Hummel, J. Relationship between reticular pH parameters and potential on-farm indicators in the early lactation of dairy cows. J. Anim. Physiol. Anim. Nutr. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ipema, A.H.; Goense, D.; Hogewerf, P.H.; Houwers, H.W.J.; van Roest, H. Pilot study to monitor body temperature of dairy cows with a rumen bolus. Comput. Electron. Agric. 2008, 64, 49–52. [Google Scholar] [CrossRef]
- Bewley, J.M.; Grott, M.W.; Einstein, M.E.; Schutz, M.M. Impact of intake water temperatures on reticular temperatures of lactating dairy cows. J. Dairy Sci. 2008, 91, 3880–3887. [Google Scholar] [CrossRef] [PubMed]
- Boehmer, B.H.; Pye, T.A.; Wettemann, R.P. Ruminal temperature as a measure of body temperature of beef cows and relationship with ambient temperature. Prof. Anim. Sci. 2015, 31, 387–393. [Google Scholar] [CrossRef]
- Lees, A.M.; Lees, J.C.; Lisle, A.T.; Sullivan, M.L.; Gaughan, J.B. Effect of heat stress on rumen temperature of three breeds of cattle. Int. J. Biometeorol. 2018, 62, 207–215. [Google Scholar] [CrossRef]
- Brod, D.L.; Bolsen, K.K.; Brent, B.E. Effect of water temperature in rumen temperature, digestion and rumen fermentation in sheep. J. Anim. Sci. 1982, 54, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Hicks, L.C.; Hicks, W.S.; Bucklin, R.A.; Shearer, J.K.; Bray, D.R.; Soto, P.; Carvalho, V. Comparison of methods of measuring deep body temperatures of dairy cows. In Livestock Environment VI, Proceedings of the 6th International Symposium, Louisville, Kentucky, 21–23 May 2001; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2001; p. 432. [Google Scholar] [CrossRef]
- Burnett, T.A.; Kaur, M.; Polsky, L.; Cerri, R.L.A. Rumen-Reticular Temperature During Estrus and Ovulation Using Automated Activity Monitors in Dairy Cows. Front. Vet. Sci. 2020, 7, 597512. [Google Scholar] [CrossRef] [PubMed]
- AlZahal, O.; AlZahal, H.; Steele, M.A.; Van Schaik, M.; Kyriazakis, I.; Duffield, T.F.; McBride, B.W. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle. J. Dairy Sci. 2011, 94, 3568–3574. [Google Scholar] [CrossRef]
- Ammer, S.; Lambertz, C.; Gauly, M. Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions. J. Dairy Res. 2016, 83, 165–172. [Google Scholar] [CrossRef]
- Bewley, J.M.; Einstein, M.E.; Grott, M.W.; Schutz, M.M. Comparison of reticular and rectal core body temperatures in lactating dairy cows. J. Dairy Sci. 2008, 91, 4661–4672. [Google Scholar] [CrossRef]
- Knauer, W.A.; Godden, S.M.; McDonald, N. Preliminary evaluation of an automated indwelling rumen temperature bolus measurement system to detect pyrexia in preweaned dairy calves. J. Dairy Sci. 2016, 99, 9925–9930. [Google Scholar] [CrossRef]
- Ammer, S.; Lambertz, C.; Gauly, M. Is reticular temperature a useful indicator of heat stress in dairy cattle? J. Dairy Sci. 2016, 99, 10067–10076. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Diosdado, J.A.; Miguel-Pacheco, G.G.; Plant, B.; Dottorini, T.; Green, M.; Kaler, J. Developing and evaluating threshold-based algorithms to detect drinking behavior in dairy cows using reticulorumen temperature. J. Dairy Sci. 2019, 102, 10471–10482. [Google Scholar] [CrossRef]
- Hanušovský, O.; Bíro, D.; Šimko, M.; Gálik, B.; Juráček, M.; Rolinec, M.; Herkel’, R. Drinking regime evaluation with continuous ruminal monitoring boluses. Acta Fytotech. Zootech. 2017, 20, 1–5. [Google Scholar] [CrossRef]
- Burgos, M.S.; Senn, M.; Sutter, F.; Kreuzer, M.; Langhans, W. Effect of water restriction on feeding and metabolism in dairy cows. Am. J. Physiol. Integr. Comp. Physiol. 2001, 280, R418–R427. [Google Scholar] [CrossRef]
- Nagl, L.; Schmitz, R.; Warren, S.; Hildreth, T.S.; Erickson, H.; Andresen, D. Wearable sensor system for wireless state-of-health determination in cattle. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), Cancun, Mexico, 17–21 September 2003; Volume 4, pp. 3012–3015. [Google Scholar]
- Curone, D.; Tognetti, A.; Secco, E.L.; Anania, G.; Carbonaro, N.; De Rossi, D.; Magenes, G. Heart rate and accelerometer data fusion for activity assessment of rescuers during emergency interventions. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Michie, C.; Andonovic, I.; Davison, C.; Hamilton, A.; Tachtatzis, C.; Jonsson, N.; Duthie, C.A.; Bowen, J.; Gilroy, M. The Internet of Things enhancing animal welfare and farm operational efficiency. J. Dairy Res. 2020, 87, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Okada, H.; Sawada, H.; Takahashi, Y.; Kimura, K.; Itoh, T. Evaluation of ruminal motility in cattle by a bolus-type wireless sensor. J. Vet. Med. Sci. 2019, 81, 1835–1841. [Google Scholar] [CrossRef]
- Sato, S.; Mizuguchi, H.; Ito, K.; Ikuta, K.; Kimura, A.; Okada, K. Technical note: Development and testing of a radio transmission pH measurement system for continuous monitoring of ruminal pH in cows. Prev. Vet. Med. 2012, 103, 274–279. [Google Scholar] [CrossRef]
- Dogan, H.; Yavuz, M. A new wireless bolus sensor with active RFID tag to measure rumen pH. Fresenius Environ. Bull. 2018, 27, 1031–1037. [Google Scholar]
- Ledgerwood, D.N.; Winckler, C.; Tucker, C.B. Evaluation of data loggers, sampling intervals, and editing techniques for measuring the lying behavior of dairy cattle. J. Dairy Sci. 2010, 93, 5129–5139. [Google Scholar] [CrossRef]
- Fallon, R.J.; Rogers, P.A.M. Evaluation of rumen boluses as a method of electronic animal identification. Irish J. Agric. Food Res. 2001, 40, 161–168. [Google Scholar]
- Hanton, J.P.; Leach, H.A. Electronic Livestock Identification System. U.S. Patent 4262632, 21 April 1981. [Google Scholar]
- Hillerton, J.E.; Knight, C.H.; Turvey, A.; Wheatley, S.D.; Wilde, C.J. Milk yield and mammary function in dairy cows milked four times daily. J. Dairy Res. 1990, 57, 285–294. [Google Scholar] [CrossRef]
- Caja, G.; Castro-Costa, A.; Knight, C.H. Engineering to support wellbeing of dairy animals. J. Dairy Res. 2016, 83, 136–147. [Google Scholar] [CrossRef]
- Lavric, A.; Petrariu, A.I.; Popa, V. SigFox communication protocol: The new era of IoT? In Proceedings of the 2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI), Lisbon, Portugal, 29–30 August 2019; pp. 1–4. [Google Scholar]
- Devalal, S.; Karthikeyan, A. LoRa technology-an overview. In Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 284–290. [Google Scholar]
- Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. Ict Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Zayas, A.D.; Merino, P. The 3GPP NB-IoT system architecture for the Internet of Things. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 277–282. [Google Scholar]
- Daum, T.; Ravichandran, T.; Kariuki, J.; Chagunda, M.; Birner, R. Connected cows and cyber chickens? Stocktaking and case studies of digital livestock tools in Kenya and India. Agric. Syst. 2022, 196, 103353. [Google Scholar] [CrossRef]
- Berthold, M.; Hand, J.D. (Eds.) Intelligent Data Analysis; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Evgeniou, T.; Pontil, M. Support vector machines: Theory and applications. Lect. Notes Comput. Sci. 2001, 2001, 249–257. [Google Scholar] [CrossRef]
- Riaboff, L.; Shalloo, L.; Smeaton, A.F.; Couvreur, S.; Madouasse, A.; Keane, M.T. Predicting livestock behaviour using accelerometers: A systematic review of processing techniques for ruminant behaviour prediction from raw accelerometer data. Comput. Electron. Agric. 2022, 192, 106610. [Google Scholar] [CrossRef]
- Mottram, T.T. Is a Lifetime Rumen Monitoring Bolus Possible? 2010. Available online: https://www.researchgate.net/publication/268182649_Is_A_Lifetime_Rumen_Monitoring_Bolus_Possible (accessed on 1 August 2022).
- Cabrera, V.E.; Fadul-pacheco, L. Future of dairy farming from the Dairy Brain perspective: Data integration, analytics, and applications. Int. Dairy J. 2021, 121, 105069. [Google Scholar] [CrossRef]
- Gu, J.Q.; Wang, Z.H.; Gao, R.H.; Wu, H.R. Cow behavior recognition based on image analysis and activities. Int. J. Agric. Biol. Eng. 2017, 10, 165–174. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Porto, S.M.C.; Mancino, M.; Cascone, G. Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data. Comput. Electron. Agric. 2017, 134, 124–134. [Google Scholar] [CrossRef]
- Fuentes, A.; Yoon, S.; Park, J.; Park, D.S. Deep learning-based hierarchical cattle behavior recognition with spatio-temporal information. Comput. Electron. Agric. 2020, 177, 105627. [Google Scholar] [CrossRef]
- Jiang, B.; Yin, X.; Song, H. Single-stream long-term optical flow convolution network for action recognition of lameness dairy cow. Comput. Electron. Agric. 2020, 175, 105536. [Google Scholar] [CrossRef]
- Nagy, G.; Jancsó, T.; Chen, C. The fitting disc method, a new robust algorithm of the point cloud processing. Acta Polytech. Hungarica 2017, 14, 59–73. [Google Scholar] [CrossRef]
- Nagy, G. Sector Based Linear Regression, a New Robust Method for the Multiple Linear Regression. Acta Cybern. 2018, 23, 1017–1038. [Google Scholar] [CrossRef]
- Cveticanin, D. New Approach to the Dynamic Weighing of Livestock. Biosyst. Eng. 2003, 86, 247–252. [Google Scholar] [CrossRef]
- Cveticanin, D. Lehrstuhl für Maschinen- und Apparatekunde der Technischen Universität München Modelling and Simulation of Cow Locomotion for; Technischen Universität: München, Germany, 2004. [Google Scholar]
- Murakami, K.; Izuo, N.; Bitan, G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J. Biol. Chem. 2022, 298, 101478. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W.; Shamsizadeh, Z.; Gholipour, S.; Nikaeen, M. The air-borne antibiotic resistome: Occurrence, health risks, and future directions. Sci. Total Environ. 2022, 804, 150154. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Hao, K. Development of CNN-based visual recognition air conditioner for smart buildings. J. Inf. Technol. Constr. 2020, 25, 361–373. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, C.; Hao, C.; Chen, D.; Guo, D. Improving the generalization ability of deep neural networks for cross-domain visual recognition. IEEE Trans. Cogn. Dev. Syst. 2020, 13, 607–620. [Google Scholar] [CrossRef]
- Tang, Z.; Luo, L.; Xie, B.; Zhu, Y.; Zhao, R.; Bi, L.; Lu, C. Automatic Sparse Connectivity Learning for Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef]
- Streich, J.; Romero, J.; Gazolla, J.G.F.M.; Kainer, D.; Cliff, A.; Prates, E.T.; Brown, J.B.; Khoury, S.; Tuskan, G.A.; Garvin, M.; et al. Can exascale computing and explainable artificial intelligence applied to plant biology deliver on the United Nations sustainable development goals? Curr. Opin. Biotechnol. 2020, 61, 217–225. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Diamantopoulos, T.; Symeonidis, A.L.; Theocharis, J.B.; Iossifides, A.; Chatzimisios, P.; Pratos, G.; Kouvas, D. Versatile Internet of Things for Agriculture: An eXplainable AI Approach. In Artificial Intelligence Applications and Innovations; Springer: Cham, Switzerland, 2020; pp. 180–191. [Google Scholar]
- Bradhurst, R.A.; Roche, S.E.; East, I.J.; Kwan, P.; Garner, M.G. Improving the computational efficiency of an agent-based spatiotemporal model of livestock disease spread and control. Environ. Model. Softw. 2016, 77, 1–12. [Google Scholar] [CrossRef]
- Benaissa, S.; Tuyttens, F.A.; Plets, D.; Cattrysse, H.; Martens, L.; Vandaele, L.; Joseph, W.; Sonck, B. Classification of ingestive-related cow behaviours using RumiWatch halter and neck-mounted accelerometers. Appl. Anim. Behav. Sci. 2019, 211, 9–16. [Google Scholar] [CrossRef] [Green Version]
Sensor Type by Placement | Placement without Hurt | Usage Length | Aim of Data Processing | |
---|---|---|---|---|
1 | Body surface ECG equipment | + | 1 to 2 days | processed measurement result |
2 | Neck rumination sensor | + | few weeks–3 years | processed measurement result |
3 | Leg activity sensor | + | 1–3 weeks | processed measurement result |
4 | Rumen sensors, originally pH measurements | + | 3 months–5 years | processed measurement result, complex expert opinion/alert |
5 | Tail, ear estrus detector | + | few days | processed measurement result complex expert opinion/alert |
6 | Vaginal partition detector | + | up to 1 week | processed measurement result complex expert opinion/alert |
7 | Subcutaneous sensor | - | 5 years | processed measurement result, complex expert opinion/alert |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajnal, É.; Kovács, L.; Vakulya, G. Dairy Cattle Rumen Bolus Developments with Special Regard to the Applicable Artificial Intelligence (AI) Methods. Sensors 2022, 22, 6812. https://doi.org/10.3390/s22186812
Hajnal É, Kovács L, Vakulya G. Dairy Cattle Rumen Bolus Developments with Special Regard to the Applicable Artificial Intelligence (AI) Methods. Sensors. 2022; 22(18):6812. https://doi.org/10.3390/s22186812
Chicago/Turabian StyleHajnal, Éva, Levente Kovács, and Gergely Vakulya. 2022. "Dairy Cattle Rumen Bolus Developments with Special Regard to the Applicable Artificial Intelligence (AI) Methods" Sensors 22, no. 18: 6812. https://doi.org/10.3390/s22186812