Sensor Size Effect on Rayleigh Wave Velocity on Cementitious Surfaces
Abstract
:1. Introduction
2. Wave Background
2.1. Rayleigh Waves and Dispersion on Concrete
2.2. Objective
3. Numerical Simulation and Dispersion Calculation
4. Results
4.1. Waveforms
4.2. Dispersion Results
5. Discussion
6. Experimental Part
7. Conclusions
- The Rayleigh pulse velocity as measured from time domain is underestimated by 3.5% for large sensors (wavelength smaller than 1.5 times the sensor size). Experimentally, this difference reached even higher values above 10%;
- The Rayleigh dispersion curve is strongly influenced by the sensor size. Specifically, the velocity starts to deviate from the point the wavelength becomes about 1.3 to 1.5 times the sensor size or lower;
- Up to that point (roughly wavelength 1.5 times the sensor size) there is no strong influence of the sensor size. Practically, for concrete media, a sensor of 4 cm diameter would lead to reliable Rayleigh wave velocity measurements up to approximately 35–40 kHz, while a sensor of 1 cm diameter, would be reliable up to 160 kHz. For higher frequencies, the velocity curve vs. frequency could be underestimated by up to 15%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naik, T.; Malhotra, V.; Popovics, J. The Ultrasonic Pulse Velocity Method. In Handbook on Nondestructive Testing of Concrete; CRC Press: Boca Raton, FL, USA, 2003; pp. 8–11. [Google Scholar]
- Landis, E.; Shah, P. Frequency-dependent stress wave attenuation in cement-based materials. J. Eng. Mech. 1995, 121, 737–743. [Google Scholar] [CrossRef]
- Chaix, J.-F.; Garnier, V.; Corneloup, G. Ultrasonic wave propagation in heterogeneous solid media: Theoretical analysis and experimental validation. Ultrasonics 2006, 44, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Philippidis, T.; Aggelis, D. Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 2005, 43, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Iliopoulos, S.; De Smet, L.; Aggelis, D. Investigating ultrasonic wave dispersion and attenuation in fresh cementitious materials: A combined numerical, analytical, and experimental approach. NDT E Int. 2018, 100, 115–123. [Google Scholar] [CrossRef]
- Ahn, E.; Shin, M.; Popovics, J.S.; Weaver, R.L. Effectiveness of diffuse ultrasound for evaluation of micro-cracking damage in concrete. Cem. Concr. Res. 2019, 124, 105862. [Google Scholar] [CrossRef]
- Ono, K. Calibration Methods of Acoustic Emission Sensors. Materials 2016, 9, 508. [Google Scholar] [CrossRef] [Green Version]
- McLaskey, G.C.; Glaser, S.D. Acoustic Emission Sensor Calibration for Absolute Source Measurements. J. Nondestruct. Eval. 2012, 31, 157–168. [Google Scholar] [CrossRef]
- Ono, K.; Hayashi, T.; Cho, H. Bar-Wave Calibration of Acoustic Emission Sensors. Appl. Sci. 2017, 7, 964. [Google Scholar] [CrossRef] [Green Version]
- Sause, M.G.; Hamstad, M.A. Numerical modeling of existing acoustic emission sensor absolute calibration approaches. Sens. Actuators A Phys. 2018, 269, 294–307. [Google Scholar] [CrossRef]
- Tsangouri, E.; Aggelis, D.G. The Influence of Sensor Size on Acoustic Emission Waveforms—A Numerical Study. Appl. Sci. 2018, 8, 168. [Google Scholar] [CrossRef] [Green Version]
- Ono, K. On the Piezoelectric Detection of Guided Ultrasonic Waves. Materials 2017, 10, 1325. [Google Scholar] [CrossRef] [Green Version]
- Carino, N. Training: Often the missing link in using NDT methods. Constr. Build. Mater. 2013, 38, 1316–1329. [Google Scholar] [CrossRef]
- Graff, K. Wave Motion in Elastic Solids; Dover Publications: New York, NY, USA, 1975. [Google Scholar]
- Jacobs, L.J.; Owino, J.O. Effect of Aggregate Size on Attenuation of Rayleigh Surface Waves in Cement-Based Materials. J. Eng. Mech. 2000, 126, 1124–1130. [Google Scholar] [CrossRef]
- Qixian, L.; Bungey, J. Using compression wave ultrasonic transducers to measure the velocity of surface waves and hence determine dynamic modulus of elasticity for concrete. Constr. Build. Mater. 1996, 10, 237–242. [Google Scholar] [CrossRef]
- Burtin, A.; Hovius, N.; Turowski, J.M. Seismic monitoring of torrential and fluvial processes. Earth Surf. Dyn. 2016, 4, 285–307. [Google Scholar] [CrossRef] [Green Version]
- Waterman, P.; Truell, R. Multiple scattering of waves. J. Math. Phys. 1961, 2, 512–537. [Google Scholar] [CrossRef]
- Sayers, C.; Dahlin, A. Propagation of ultrasound through hydrating cement pastes at early times. Adv. Cem. Based Mater. 1993, 1, 12–21. [Google Scholar] [CrossRef]
- Aggelis, D.; Polyzos, D.; Philippidis, T. Wave dispersion and attenuation in fresh mortar: Theoretical predictions vs. experimental results. J. Mech. Phys. Solids 2005, 53, 857–883. [Google Scholar] [CrossRef]
- Chaix, J.-F.; Rossat, M.; Garnier, V.; Corneloup, G. An experimental evaluation of two effective medium theories for ultrasonic wave propagation in concrete. J. Acoust. Soc. Am. 2012, 131, 4481–4490. [Google Scholar] [CrossRef] [Green Version]
- Aggelis, D.G.; Shiotani, T. Experimental study of surface wave propagation in strongly heterogeneous media. J. Acoust. Soc. Am. 2007, 122, EL151–EL157. [Google Scholar] [CrossRef] [Green Version]
- Métais, V.; Chekroun, M.; Le Marrec, L.; Le Duff, A.; Plantier, G.; Abraham, O. Influence of multiple scattering in heterogeneous concrete on results of the surface wave inverse problem. NDT E Int. 2016, 79, 53–62. [Google Scholar] [CrossRef]
- In, C.-W.; Schempp, F.; Kim, J.-Y.; Jacobs, L.J. A Fully Non-contact, Air-Coupled Ultrasonic Measurement of Surface Breaking Cracks in Concrete. J. Nondestruct. Eval. 2014, 34, 7. [Google Scholar] [CrossRef]
- Song, W.-J.; Popovics, J.S.; Aldrin, J.C.; Shah, S.P. Measurement of surface wave transmission coefficient across surface-breaking cracks and notches in concrete. J. Acoust. Soc. Am. 2003, 113, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Popovics, J.S. Contactless Ultrasonic Wavefield Imaging to Visualize Near-Surface Damage in Concrete Elements. Appl. Sci. 2019, 9, 3005. [Google Scholar] [CrossRef] [Green Version]
- Lee, F.; Chai, H.; Lim, K. Characterizing concrete surface notch using Rayleigh wave phase velocity and wavelet parametric analyses. Constr. Build. Mater. 2017, 136, 627–642. [Google Scholar] [CrossRef] [Green Version]
- Aggelis, D.; Shiotani, T.; Polyzos, D. Characterization of surface crack depth and repair evaluation using Rayleigh waves. Cem. Concr. Compos. 2009, 31, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Lefever, G.; Snoeck, D.; De Belie, N.; Van Vlierberghe, S.; Van Hemelrijck, D.; Aggelis, D.G. The Contribution of Elastic Wave NDT to the Characterization of Modern Cementitious Media. Sensors 2020, 20, 2959. [Google Scholar] [CrossRef] [PubMed]
- Goueygou, M.; Piwakowski, B.; Fnine, A.; Kaczmarek, M.; Buyle-Bodin, F. NDE of two-layered mortar samples using high-frequency Rayleigh waves. Ultrasonics 2004, 42, 889–895. [Google Scholar] [CrossRef]
- Kim, D.; Seo, W.; Lee, K. IE–SASW method for nondestructive evaluation of concrete structure. NDT E Int. 2006, 39, 143–154. [Google Scholar] [CrossRef]
- Gudra, T.; Stawiski, B. Non-destructive strength characterization of concrete using surface waves. NDT E Int. 2000, 33, 1–6. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, Y.J.; Kim, H.S.; Kang, J.W.; Koh, H.-M. Evaluation of Early-Age Concrete Compressive Strength with Ultrasonic Sensors. Sensors 2017, 17, 1817. [Google Scholar] [CrossRef] [Green Version]
- Park, J.Y.; Yoon, Y.G.; Oh, T.K. Prediction of Concrete Strength with P-, S-, R-Wave Velocities by Support Vector Machine (SVM) and Artificial Neural Network (ANN). Appl. Sci. 2019, 9, 4053. [Google Scholar] [CrossRef] [Green Version]
- Aggelis, D.; Shiotani, T. Repair evaluation of concrete cracks using surface and through-transmission wave measurements. Cem. Concr. Compos. 2007, 29, 700–711. [Google Scholar] [CrossRef]
- Iliopoulos, S.; Malm, F.; Grosse, C.; Aggelis, D.; Polyzos, D. Concrete wave dispersion interpretation through Mindlin’s strain gradient elastic theory. J. Acoust. Soc. Am. 2017, 142, EL89–EL94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Lu, L.; Qiao, P. Assessment of wave modulus of elasticity of concrete with surface-bonded piezoelectric transducers. Constr. Build. Mater. 2020, 242, 118033. [Google Scholar] [CrossRef]
- Wave2000 Plus-Software for Computational Ultrasonics. Cyberlogic. Available online: http://www.cyberlogic.org/wave2000.html (accessed on 2 September 2021).
- Sachse, W.; Pao, Y. On the determination of phase and group velocities of dispersive waves in solids. J. Appl. Phys. 1978, 49, 4320–4327. [Google Scholar] [CrossRef]
- Lefever, G.; Ospitia, N.; Serafin, D.; Van Hemelrijck, D.; Aggelis, D. Chasing the bubble: Ultrasonic dispersion and attenuation from cement with superabsorbent polymers to shampoo. Materials 2020, 13, 4528. [Google Scholar] [CrossRef] [PubMed]
- Dokun, L.; Haj-Ali, R. Ultrasonic monitoring of material degradation in FRP composites. J. Eng. Mech. 2000, 126, 704–710. [Google Scholar] [CrossRef]
- Abeele, K.V.D.; Desadeleer, W.; De Schutter, G.; Wevers, M. Active and passive monitoring of the early hydration process in concrete using linear and nonlinear acoustics. Cem. Concr. Res. 2009, 39, 426–432. [Google Scholar] [CrossRef]
- Ospitia, N.; Aggelis, D.G.; Tsangouri, E. Dimension Effects on the Acoustic Behavior of TRC Plates. Materials 2020, 13, 955. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ospitia, N.; Aggelis, D.G.; Lefever, G. Sensor Size Effect on Rayleigh Wave Velocity on Cementitious Surfaces. Sensors 2021, 21, 6483. https://doi.org/10.3390/s21196483
Ospitia N, Aggelis DG, Lefever G. Sensor Size Effect on Rayleigh Wave Velocity on Cementitious Surfaces. Sensors. 2021; 21(19):6483. https://doi.org/10.3390/s21196483
Chicago/Turabian StyleOspitia, Nicolas, Dimitrios G. Aggelis, and Gerlinde Lefever. 2021. "Sensor Size Effect on Rayleigh Wave Velocity on Cementitious Surfaces" Sensors 21, no. 19: 6483. https://doi.org/10.3390/s21196483