Next Article in Journal
Node-Identification-Based Secure Time Synchronization in Industrial Wireless Sensor Networks
Previous Article in Journal
Discrimination of Milks with a Multisensor System Based on Layer-by-Layer Films
Previous Article in Special Issue
Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors
Article Menu
Issue 8 (August) cover image

Export Article

Open AccessArticle
Sensors 2018, 18(8), 2717; https://doi.org/10.3390/s18082717

Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths

1
Center for Microsystems Technology (CMST), Ghent University and imec, 9052 Ghent, Belgium
2
Department of Materials, Textiles and Chemical Engineering (MaTCh), Ghent University, 9052 Ghent, Belgium
*
Author to whom correspondence should be addressed.
Received: 29 June 2018 / Revised: 10 August 2018 / Accepted: 17 August 2018 / Published: 18 August 2018
(This article belongs to the Special Issue Printed Sensors 2018)
Full-Text   |   PDF [4361 KB, uploaded 18 August 2018]   |  

Abstract

Thin and flexible sensor foils are very suitable for unobtrusive integration with mechanical structures and allow monitoring for example strain and temperature while minimally interfering with the operation of those structures. Electrical strain gages have long been used for this purpose, but optical strain sensors based on Bragg gratings are gaining importance because of their improved accuracy, insusceptibility to electromagnetic interference, and multiplexing capability, thereby drastically reducing the amount of interconnection cables required. This paper reports on thin polymer sensor foils that can be used as photonic strain gage or temperature sensors, using several Bragg grating sensors multiplexed in a single polymer waveguide. Compared to commercially available optical fibers with Bragg grating sensors, our planar approach allows fabricating multiple, closely spaced sensors in well-defined directions in the same plane realizing photonic strain gage rosettes. While most of the reported Bragg grating sensors operate around a wavelength of 1550 nm, the sensors in the current paper operate around a wavelength of 850 nm, where the material losses are the lowest. This was accomplished by imprinting gratings with pitches 280 nm, 285 nm, and 290 nm at the core-cladding interface of an imprinted single mode waveguide with cross-sectional dimensions 3 × 3 µm2. We show that it is possible to realize high-quality imprinted single mode waveguides, with gratings, having only a very thin residual layer which is important to limit bend losses or cross-talk with neighboring waveguides. The strain and temperature sensitivity of the Bragg grating sensors was found to be 0.85 pm/µε and −150 pm/°C, respectively. These values correspond well with those of previously reported sensors based on the same materials but operating around 1550 nm, taking into account that sensitivity scales with the wavelength. View Full-Text
Keywords: Bragg grating sensor; flexible sensor; foil; nanoimprint lithography; Ormocer; polymer; strain gage rosette; strain sensor; temperature sensor; waveguide Bragg grating sensor; flexible sensor; foil; nanoimprint lithography; Ormocer; polymer; strain gage rosette; strain sensor; temperature sensor; waveguide
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Missinne, J.; Teigell Benéitez, N.; Mattelin, M.-A.; Lamberti, A.; Luyckx, G.; Van Paepegem, W.; Van Steenberge, G. Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths. Sensors 2018, 18, 2717.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top