Next Article in Journal
Electromagnetic Field Assessment as a Smart City Service: The SmartSantander Use-Case
Next Article in Special Issue
Torsional Ultrasound Sensor Optimization for Soft Tissue Characterization
Previous Article in Journal
A Point Temperature Sensor Based on Upconversion Emission in Er3+/Yb3+ Codoped Tellurite-Zinc-Niobium Glass
Previous Article in Special Issue
Measurement of Vibrations in Two Tower-Typed Assistant Personal Robot Implementations with and without a Passive Suspension System
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Sensors 2017, 17(6), 1249; doi:10.3390/s17061249

Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics

1
Tecnalia Research and Innovation, Industry and Transport Division, San Sebastián 20009, Spain
2
Department of Systems Engineering and Automation, Universidad del País Vasco/Euskal Herriko Unibertsitatea, EleKin Research Group, San Sebastián 20009, Spain
*
Author to whom correspondence should be addressed.
Academic Editor: Gonzalo Pajares Martinsanz
Received: 1 March 2017 / Revised: 23 May 2017 / Accepted: 23 May 2017 / Published: 31 May 2017
(This article belongs to the Special Issue State-of-the-Art Sensors Technology in Spain 2017)
View Full-Text   |   Download PDF [1677 KB, uploaded 13 June 2017]   |  

Abstract

This paper presents a state machine-based architecture, which enhances the flexibility and reusability of industrial robots, more concretely dual-arm multisensor robots. The proposed architecture, in addition to allowing absolute control of the execution, eases the programming of new applications by increasing the reusability of the developed modules. Through an easy-to-use graphical user interface, operators are able to create, modify, reuse and maintain industrial processes, increasing the flexibility of the cell. Moreover, the proposed approach is applied in a real use case in order to demonstrate its capabilities and feasibility in industrial environments. A comparative analysis is presented for evaluating the presented approach versus traditional robot programming techniques. View Full-Text
Keywords: intelligent robotics; flexibility; reusability; multisensor; state machine; software architecture; computer vision intelligent robotics; flexibility; reusability; multisensor; state machine; software architecture; computer vision
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Herrero, H.; Outón, J.L.; Puerto, M.; Sallé, D.; López de Ipiña, K. Enhanced Flexibility and Reusability through State Machine-Based Architectures for Multisensor Intelligent Robotics. Sensors 2017, 17, 1249.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top