Next Article in Journal
A Circuit-Based Neural Network with Hybrid Learning of Backpropagation and Random Weight Change Algorithms
Next Article in Special Issue
Fisheye-Based Method for GPS Localization Improvement in Unknown Semi-Obstructed Areas
Previous Article in Journal
Nanostructured Tip-Shaped Biosensors: Application of Six Sigma Approach for Enhanced Manufacturing
Previous Article in Special Issue
Recognition of Damaged Arrow-Road Markings by Visible Light Camera Sensor Based on Convolutional Neural Network
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Sensors 2017, 17(1), 18; doi:10.3390/s17010018

A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data

División de Sistemas en Ingeniería Electrónica (DSIE), Universidad Politécnica de Cartagena, Campus Muralla del Mar, s/n, Cartagena 30202, Spain
These authors contributed equally to this work.
*
Author to whom correspondence should be addressed.
Academic Editor: Felipe Jimenez
Received: 31 October 2016 / Revised: 11 December 2016 / Accepted: 15 December 2016 / Published: 23 December 2016
(This article belongs to the Special Issue Sensors for Autonomous Road Vehicles)
View Full-Text   |   Download PDF [12514 KB, uploaded 23 December 2016]   |  

Abstract

This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%). View Full-Text
Keywords: pedestrian detection; 3D LIDAR sensor; machine vision and machine learning pedestrian detection; 3D LIDAR sensor; machine vision and machine learning
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Navarro, P.J.; Fernández, C.; Borraz, R.; Alonso, D. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data. Sensors 2017, 17, 18.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top