Sensors 2013, 13(5), 6089-6108; doi:10.3390/s130506089
Article

A Self-Sensing Piezoelectric MicroCantilever Biosensor for Detection of Ultrasmall Adsorbed Masses: Theory and Experiments

Received: 6 April 2013; in revised form: 4 May 2013 / Accepted: 6 May 2013 / Published: 10 May 2013
(This article belongs to the Special Issue Piezoelectric Sensors and Actuators)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Detection of ultrasmall masses such as proteins and pathogens has been made possible as a result of advancements in nanotechnology. Development of label-free and highly sensitive biosensors has enabled the transduction of molecular recognition into detectable physical quantities. Microcantilever (MC)-based systems have played a widespread role in developing such biosensors. One of the most important drawbacks of all of the available biosensors is that they all come at a very high cost. Moreover, there are certain limitations in the measurement equipments attached to the biosensors which are mostly optical measurement systems. A unique self-sensing detection technique is proposed in this paper in order to address most of the limitations of the current measurement systems. A self-sensing bridge is used to excite piezoelectric MC-based sensor functioning in dynamic mode, which simultaneously measures the system’s response through the self-induced voltage generated in the piezoelectric material. As a result, the need for bulky, expensive read-out equipment is eliminated. A comprehensive mathematical model is presented for the proposed self-sensing detection platform using distributed-parameters system modeling. An adaptation strategy is then implemented in the second part in order to compensate for the time-variation of piezoelectric properties which dynamically improves the behavior of the system. Finally, results are reported from an extensive experimental investigation carried out to prove the capability of the proposed platform. Experimental results verified the proposed mathematical modeling presented in the first part of the study with accuracy of 97.48%. Implementing the adaptation strategy increased the accuracy to 99.82%. These results proved the measurement capability of the proposed self-sensing strategy. It enables development of a cost-effective, sensitive and miniaturized mass sensing platform.
Keywords: microcantilever; biosensor; distributed-parameter modeling; mass detection
PDF Full-text Download PDF Full-Text [815 KB, Updated Version, uploaded 21 June 2014 07:07 CEST]
The original version is still available [815 KB, uploaded 21 June 2014 07:07 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Faegh, S.; Jalili, N.; Sridhar, S. A Self-Sensing Piezoelectric MicroCantilever Biosensor for Detection of Ultrasmall Adsorbed Masses: Theory and Experiments. Sensors 2013, 13, 6089-6108.

AMA Style

Faegh S, Jalili N, Sridhar S. A Self-Sensing Piezoelectric MicroCantilever Biosensor for Detection of Ultrasmall Adsorbed Masses: Theory and Experiments. Sensors. 2013; 13(5):6089-6108.

Chicago/Turabian Style

Faegh, Samira; Jalili, Nader; Sridhar, Srinivas. 2013. "A Self-Sensing Piezoelectric MicroCantilever Biosensor for Detection of Ultrasmall Adsorbed Masses: Theory and Experiments." Sensors 13, no. 5: 6089-6108.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert