Sensors 2012, 12(6), 8405-8425; doi:10.3390/s120608405

Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System

1 Department of Life and Environment Engineering, Faculty of Environmental Engineering, University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan 2 AR’S CO., Ltd., 5-1, Yokohama Creation Square, Sakaecho, Kanagawa, Yokohama 221-0052, Japan 3 The Graduate School of Information, Production and Systems, Waseda University, 2-7, Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan
* Author to whom correspondence should be addressed.
Received: 12 April 2012; in revised form: 30 May 2012 / Accepted: 11 June 2012 / Published: 19 June 2012
(This article belongs to the Special Issue Selective Chelating Agents)
PDF Full-text Download PDF Full-Text [591 KB, Updated Version, uploaded 20 June 2012 08:38 CEST]
The original version is still available [837 KB, uploaded 19 June 2012 10:34 CEST]
Abstract: We fabricated an electrode chip with a structure coated by an insulation layer that contains dispersed SiO2 adsorbent particles modified by an amino-group on a source-drain electrode. Voltage changes caused by chelate molecule adsorption onto electrode surfaces and by specific cation interactions were investigated. The detection of specific cations without the presence of chelate molecules on the free electrode was also examined. By comparing both sets of results the complexation ability of the studied chelate molecules onto the electrode was evaluated. Five pairs of source-drain electrodes (×8 arrays) were fabricated on a glass substrate of 20 × 30 mm in size. The individual Au/Cr (1.0/0.1 μm thickness) electrodes had widths of 50 μm and an inter-electrode interval of 100 μm. The fabricated source-drain electrodes were further coated with an insulation layer comprising a porous SiO2 particle modified amino-group to adsorb the chelate molecules. The electrode chip was equipped with a handy-type sensor signal analyzer that was mounted on an amplifier circuit using a MinishipTM or a system in a packaged LSI device. For electrode surfaces containing different adsorbed chelate molecules an increase in the sensor voltage depended on a combination of host-guest reactions and generally decreased in the following order: 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphine, tetrakis(p-toluenesulfonate) (TMPyP) as a Cu2+ chelator and Cu2+ > 2-nitroso-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol (nitroso-PSAP) as an Fe2+ chelator and Fe2+ > 4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, disodium salt (BPDSA) as an Fe2+ chelator and Fe2+ > 3-[3-(2,4-dimethylphenylcarbamoyl)-2-hydroxynaphthalene-1-yl-azo]-4-hydroxybenzenesulfonic acid, sodium salt (XB-1) as a Mg2+ chelator and Mg2+ > 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinedisulfonic acid, disodium salt (BCIDSA) as a Cu2+ chelator and Cu2+, respectively. In contrast, for the electrode surfaces with adsorbed O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid (GEDTA) or O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetraacetic acid, tetrapotassium salt, hydrate (BAPTA) as a Ca2+ chelator no increase in the detection voltage was found for all the electrode tests conducted in the presence of Ca2+. To determine the differences in electrode detection, molecular orbital (MO) calculations of the chelate molecules and surface molecular modeling of the adsorbents were carried out. In accordance with frontier orbital theory, the lowest unoccupied MO (LUMO) of the chelate molecules can accept two lone pair electrons at the highest occupied MO (HOMO) of the amino group on the model surface structure of the SiO2 particle. As a result, a good correlation was obtained between the LUMO-HOMO difference and the ion response of all the electrodes tested. Based on the results obtained, the order of adsorbed chelate molecules on adsorption particles reflects the different metal ion detection abilities of the electrode chips.
Keywords: chemical adsorption; electrode; chelate; metal ion

Article Statistics

Load and display the download statistics.

Citations to this Article

Cite This Article

MDPI and ACS Style

Isoda, T.; Urushibara, I.; Sato, H.; Yamauchi, N. Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System. Sensors 2012, 12, 8405-8425.

AMA Style

Isoda T, Urushibara I, Sato H, Yamauchi N. Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System. Sensors. 2012; 12(6):8405-8425.

Chicago/Turabian Style

Isoda, Takaaki; Urushibara, Ikuko; Sato, Hikaru; Yamauchi, Noriyoshi. 2012. "Evaluation of Complexation Ability Using a Sensor Electrode Chip Equipped with a Wireless Screening System." Sensors 12, no. 6: 8405-8425.

Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert