Next Article in Journal
Previous Article in Journal
Sensors 2001, 1(7), 215-228; doi:10.3390/s10700215
Article

Mediated Electron Transfer at Redox Active Monolayers

Received: 29 November 2001; Accepted: 9 December 2001 / Published: 13 December 2001
Download PDF [178 KB, uploaded 20 June 2014]
Abstract: A theoretical model describing the transport and kinetic processes involved in heterogeneous redox catalysis of solution phase reactants at electrode surfaces coated with redox active monolayers is presented. Although the analysis presented has quite general applicability, a specific focus of the paper is concerned with the idea that redox active monolayers can be used to model an ensemble of individual molecular nanoelectrodes. Three possible rate determining steps are considered: heterogeneous electron transfer between immobilized mediator and support electrode ; bimolecular chemical reaction between redox mediator and reactant species in the solution phase, and diffusional mass transport of reactant in solution. A general expression for the steady state reaction flux is derived which is valid for any degree of reversibility of both the heterogeneous electron transfer reaction involving immobilized mediator species and of the bimolecular cross exchange reaction between immobilized mediator and solution phase reactant. The influence of reactant transport in solution is also specifically considered. Simplified analytical expressions for the net reaction flux are derived for experimentally reasonable situations and a kinetic case diagram is constructed outlining the relationships between the various approximate solutions. The theory enables simple diagnostic plots to be constructed which can be used to analyse experimental data.
Keywords: Heterogeneous redox catalysis; Redox active monolayers; Self assembled monolayers; Nanoelectrode ensembles Heterogeneous redox catalysis; Redox active monolayers; Self assembled monolayers; Nanoelectrode ensembles
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Lyons, M.E. Mediated Electron Transfer at Redox Active Monolayers. Sensors 2001, 1, 215-228.

AMA Style

Lyons ME. Mediated Electron Transfer at Redox Active Monolayers. Sensors. 2001; 1(7):215-228.

Chicago/Turabian Style

Lyons, Michael E. 2001. "Mediated Electron Transfer at Redox Active Monolayers." Sensors 1, no. 7: 215-228.



Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert