Int. J. Mol. Sci. 2004, 5(8), 239-264; doi:10.3390/i5050239
Article

Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3) and Ammonia (NH3) Donor-Acceptor Complex

Received: 15 June 2003; in revised form: 19 September 2004 / Accepted: 20 September 2004 / Published: 30 September 2004
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: The formation of the F3B–NH3 supermolecule by chemical interaction of its fragment parts, BF3 and NH3, and the dynamics of internal rotation about the ‘B–N’ bond have been studied in terms of parameters provided by the molecular orbital and density functional theories. It is found that the pairs of frontier orbitals of the interacting fragments have matching symmetry and are involved in the charge transfer interaction. The donation process stems from the HOMO of the donor into the LUMO of the acceptor and simultaneously, back donation stems from the HOMO of acceptor into the LUMO of the donor. The density functional computation of chemical activation in the donor and acceptor fragments, associated with the physical process of structural reorganization just prior to the event of chemical reaction, indicates that BF3 becomes more acidic and NH3 becomes more basic, compared to their separate equilibrium states. Theoretically it is observed that the chemical reaction event of the formation of the supermolecule from its fragment parts is in accordance with the chemical potential equalization principle of the density functional theory and the electronegativity equalization principle of Sanderson. The energetics of the chemical reaction, the magnitude of the net charge transfer and the energy of the newly formed bond are quite consistent, both internally and with the principle of maximum hardness, PMH. The dynamics of the internal rotation of one part with respect to the other part of the supermolecule about the ‘B–N’ bond mimics the pattern of the conformational isomerism of the isostructural ethane molecule. It is also observed that the dynamics and evolution of molecular conformations as a function of dihedral angles is also in accordance with the principle of maximum hardness, PMH. Quite consistent with spectroscopic predictions, the height of the molecule’s barrier to internal rotation is very small. A rationale for the low height of the barrier has been put forward in terms of the energy partitioning analysis. On the question of origin of the barrier to internal rotation, we conclude that the conformational barrier to internal rotation does not originate from a particular region of the molecule, but rather it is a result of the subtle conjoint interplay of a number of opposing effects of one- and two-center bonded and nonbonded energy terms involving the entire skeleton of the molecule.
Keywords: Charge transfer; chemical potential equalization; conformational isomerism and maximum hardness principle; barrier to internal rotation
PDF Full-text Download PDF Full-Text [286 KB, uploaded 19 June 2014 00:03 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Ghosh, D.C.; Bhattacharyya, S. Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3) and Ammonia (NH3) Donor-Acceptor Complex. Int. J. Mol. Sci. 2004, 5, 239-264.

AMA Style

Ghosh DC, Bhattacharyya S. Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3) and Ammonia (NH3) Donor-Acceptor Complex. International Journal of Molecular Sciences. 2004; 5(8):239-264.

Chicago/Turabian Style

Ghosh, Dulal C.; Bhattacharyya, Soma. 2004. "Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3) and Ammonia (NH3) Donor-Acceptor Complex." Int. J. Mol. Sci. 5, no. 8: 239-264.

Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert