Next Article in Journal
Endoglin Is an Important Mediator in the Final Common Pathway of Chronic Kidney Disease to End-Stage Renal Disease
Next Article in Special Issue
Regorafenib and Ruthenium Complex Combination Inhibit Cancer Cell Growth by Targeting PI3K/AKT/ERK Signalling in Colorectal Cancer Cells
Previous Article in Journal
Elucidating the Interaction between Pyridoxine 5′-Phosphate Oxidase and Dopa Decarboxylase: Activation of B6-Dependent Enzyme
Previous Article in Special Issue
Terconazole, an Azole Antifungal Drug, Increases Cytotoxicity in Antimitotic Drug-Treated Resistant Cancer Cells with Substrate-Specific P-gp Inhibitory Activity
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Innovative Anti-CD38 and Anti-BCMA Targeted Therapies in Multiple Myeloma: Mechanisms of Action and Resistance

1
Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy
2
Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2023, 24(1), 645; https://doi.org/10.3390/ijms24010645
Submission received: 5 December 2022 / Revised: 25 December 2022 / Accepted: 27 December 2022 / Published: 30 December 2022

Abstract

:
CD38 and B-cell maturation antigens (BCMAs) are prevalently expressed on neoplastic plasma cells in multiple myeloma (MM), making them ideal therapeutic targets. Anti-CD38 monoclonal antibodies, such as approved daratumumab and isatuximab, are currently the milestone in MM treatment because they induce plasma cell apoptosis and kill through several mechanisms, including antibody-dependent cellular cytotoxicity or phagocytosis. BCMA is considered an excellent target in MM, and three different therapeutic strategies are either already available in clinical practice or under investigation: antibody–drug conjugates, such as belantamab-mafodotin; bispecific T cell engagers; and chimeric antigen receptor-modified T cell therapies. Despite the impressive clinical efficacy of these new strategies in the treatment of newly diagnosed or multi-refractory MM patients, several mechanisms of resistance have already been described, including antigen downregulation, the impairment of antibody-dependent cell cytotoxicity and phagocytosis, T- and natural killer cell senescence, and exhaustion. In this review, we summarize the current knowledge on the mechanisms of action and resistance of anti-CD38 and anti-BCMA agents and their clinical efficacy and safety.

1. Introduction

Targeted therapy is defined as an innovative type of anti-cancer treatment that includes monoclonal antibodies (MoAbs), small molecule inhibitors, antibody-drug conjugates, and immunotherapy to specifically identify and attack cancer cells while sparing normal cells and minimizing off-target side effects [1]. Multiple myeloma (MM) is a common hematological malignancy caused by the clonal proliferation of plasma cells (PCs) with a hyperproduction of monoclonal proteins (M-protein) that accumulate in the tissues and lead to organ damage [2]. Neoplastic PCs specifically express certain surface antigens compared to their normal counterparts, such as CD38 and B-cell maturation antigen (BCMA) [3], and these targets have been investigated in numerous preclinical and clinical trials. Here, we review and describe the state-of-art anti-CD38 and anti-BCMA treatments for MM, providing an update on their current use in clinical practice and mechanisms of resistance.

2. CD38 Functions in Health and Disease

CD38, a single chain type II transmembrane glycoprotein, is involved in lymphocyte to endothelial cells through CD31 binding, cell migration, and signal transduction [4,5], and its dysfunction impairs insulin secretion, neutrophil chemotaxis, and oxytocin release [6]. CD38 is also an ectoenzyme that regulates CD31-mediated intracellular calcium mobilization and nicotinamide adenine dinucleotide catabolism [7,8]. CD38 is expressed at low levels in myeloid, lymphoid, and other cell types, while normal and neoplastic PCs show higher surface expression of this molecule [7]. Because of its prevalent expression on PCs, CD38 represents the ideal therapeutic target for MM treatments.

3. Anti-CD38 MoAbs

Anti-CD38 MoAbs exert their anti-tumor action through multiple mechanisms of action, including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), direct cellular apoptosis, complement-dependent cytotoxicity (CDC), and the modulation of extracellular ectoenzyme activity (Figure 1) [9]. Two anti-CD38 MoAbs, daratumumab and isatuximab, are already approved by regulatory agencies and used in clinical practice, while MOR202 and TAK-079 are under evaluation in clinical trials (Table 1).

3.1. Daratumumab

Daratumumab (sold under the brand name “Darzalex”), a fully humanized IgG1-κ MoAb directed against two β-strands (amino acids 233–246 and 267–280) of CD38, induces potent ADCC and CDC in MM cell lines and primary MM cells [10] and directly induces apoptosis through Fc receptor-mediated crosslinking [11] and caspase activation [12]. The clinical history of daratumumab dates back to the first-in-human phase I/II dose escalation GEN501 (NCT00574288) trial in relapsed/refractory (R/R) MM patients [13] and to the multi-center, open-label phase II SIRIUS trial (NCT01985126) evaluating intravenous daratumumab in monotherapy for R/R MM [14]. A pooled analysis of these two trials (n = 148) has documented an overall response rate (ORR) of 31%, including 13 very good partial responses (VGPR), four complete responses (CR), and 3 stringent CR (sCR), with a median progression-free survival (PFS) and overall survival (OS) rate of 4 and 20 months, respectively [15]. These results have led to the approval of daratumumab monotherapy, in 2015, for R/R MM previously treated with at least 3 lines of therapy, including proteasome inhibitors (PI) and/or immunomodulatory drugs (IMIDs) [16]. Intravenous daratumumab at 16 mg/kg has been associated with lenalidomide and dexamethasone (Dara-RD) (expansion cohort of GEN503, NCT01615029; and randomized open-label phase III POLLUX trial, NCT02076009), showing an ORR ranging from 88% to 93% [17,18,19,20]. Updated results of the POLLUX trial also show a benefit in PFS in high-risk cytogenetic MM (22.6 vs. 10.2 months) and standard-risk populations (not reached vs. 18.5 months) in Dara-RD cohorts [19]. Daratumumab has also been associated with bortezomib plus dexamethasone (VD) in the multicenter randomized open-label phase III CASTOR study (NCT02136134) and with pomalidomide plus dexamethasone (PD) in an open-label single-arm phase II trial (NCT01998971), showing ORRs of 83% and 66%, respectively, with minimal residual disease (MRD) negativity rates of 12% and 7%, and median PFS rates of 16.7 and 9.9 months, respectively [21,22]. The ongoing, open-label, randomized, phase III trial APOLLO (NCT03180736) is evaluating intravenous or subcutaneous daratumumab plus PD versus PD in R/R MM, showing median PFS rates of 12.4 vs. 6.9 months, respectively [23].
Intravenous daratumumab has been associated with second-generation proteasome inhibitor carfilzomib and dexamethasone (KD) (preliminary phase I trial, NCT01998971; and randomized, multicenter, open-label, phase III CANDOR trial, NCT03158688) in R/R MM with an ORR of 84% and a median PFS of 28.6 months [24,25].
Based on these good results in R/R MM, several trials have explored daratumumab efficacy and safety in newly diagnosed MM (NDMM) patients in association with bortezomib-melphalan-prednisone (VMP) (randomized controlled open-label phase III ALCYONE trial, NCT02195479) or with RD (randomized, open-label, phase 3 MAIA trial (NCT02252172), reporting ORRs of 91% and 92.9%, respectively, an MRD negativity rate of 22%, and a 36-month OS of 78% or a 30-month PFS of 70.6%, respectively [26,27,28,29,30]. Daratumumab also shows efficacy in combination with ixazomib dexamethasone, with an ORR of 87%, and nine-month PFS of 78% (prospective multi-center phase II HOVON 143 trial) [31], or with thalidomide-bortezomib-dexamethasone (VTD) in transplant-eligible NDMM patients (open-label, randomized, phase III CASSIOPEIA trial, NCT02541383) with sCR rates of 29% of cases at day 100 after autologous stem cell transplantation, and an MRD-negative status in 64% of patients [32]. These impressive and promising results, reported in the CASSIOPEIA trial, have led to the approval of daratumumab-VTD as the first line of fit transplant-eligible MM patients.
Daratumumab is also effective in combination with lenalidomide plus bortezomib and dexamethasone (dara-VRD) in transplant-eligible MM patients (multi-center, randomized, open-label, active-controlled phase II GRIFFIN trial, NCT02874742), showing an ORR of 99% with sCR rates of up to 67%, an MRD negativity rate of 64.4%, and a 4-year PFS of 87.2% [33]. Results from the multi-center, ongoing phase III PERSEUS trial (NCT03710603), comparing daratumumab plus VRD vs. VRD in treatment-naïve MM patients, are largely expected. Moreover, daratumumab is also under evaluation in association with carfilzomib-lenalidomide-dexamethasone (KRD) as a first-line treatment in transplant-eligible MM patients [34], or with ixazomib-lenalidomide-dexamethasone as a first-line treatment for patients regardless of transplant eligibility [35].

3.2. Isatuximab

Isatuximab (sold under the brand name “Sarclisa”), an IgG-κ chimeric anti-CD38 MoAb, exerts a potent and distinctive Fc cross-linking-independent, lysosome-dependent pro-apoptotic activity, as well as effector functions, including CDC, ADCC, and ADCP [36,37,38]. Isatuximab has first been evaluated in xenograft models [39,40] and a phase I/II trial (NCT01084252) at a 10 mg/kg dose in R/R MM, showing better results in association with dexamethasone, with an ORR of 43.6% and a median PFS rate of 10.2 months [41]. This MoAb has also been evaluated in combination with RD for R/R MM in an open-label, dose-escalation phase Ib study (NCT01749969), showing an ORR of 56% with a good safety profile [42], or in association with PD and KD [37,43]. In the randomized, multicenter, open-label, phase III trial ICARIA-MM (NCT02990338), isatuximab plus PD has been evaluated in R/R MM patients who received ≥2 therapy lines, including lenalidomide and a PI, showing a median PFS of 17.5 months and a manageable toxicity profile [44,45]. In addition, a subgroup analysis of the ICARIA-MM trial has investigated the safety and efficacy of isatuximab-PD in patients with renal impairment, showing a longer median PFS compared to PD alone (9.5 vs. 3.7 months, respectively) [46]. Moreover, isatuximab has been evaluated in combination with KD in the randomized, multi-center, open-label IKEMA trial (NCT03275285) in R/R MM patients, displaying a CR rate of 44.1%, an MRD negativity rate of 33.5%, and a median PFS of 35.7 [47,48]. Based on the results of these trials, isatuximab in combination with PD or KD has been approved in R/R MM.

3.3. MOR202 and TAK-079

MOR202 is a new human IgG-λ anti-CD38 antibody that exerts anti-MM effects through ADCC and ADCP activities [49]. MOR202 has been preliminarily evaluated in monotherapy, with dexamethasone or with dexamethasone plus one IMID in a first-in-human phase I-IIa study (NCT01421186), with a very manageable safety profile [50,51].
TAK-079, a fully human IgG1 MoAb, binds with high-affinity CD38 antigens [52]. TAK-079 is well tolerated in both intravenous and subcutaneous formulations [46] and is currently evaluated in autoimmune diseases [53] and an ongoing phase Ib trial (NCT03439280) in R/R MM patients after ≥3 lines of therapy. Updated results on TAK-079 efficacy are expected [54].

4. Resistance to Anti-CD38 Therapies

Several mechanisms of resistance to anti-CD38 MoAbs have been described, including CD38 downregulation, ADCC, ADCP, or CDC failure, and immune-mediated processes. High expression levels of the CD38 antigen on neoplastic PCs are essential for anti-CD38 activity [55]; however, during daratumumab treatments, CD38 levels decrease through JAK-STAT3 signaling pathway modifications [56] and return to normal levels after 3–6 months from daratumumab discontinuation [57,58]. Therefore, neoplastic clones expressing low CD38 levels could expand during treatment, and monocytes and granulocytes might favor the immune evasion of tumor cells [59]. CD38 downregulation could also be promoted by the inhibitory functions of microRNAs (miR), such as miR-26a [56,57,58,59,60]. Exposure to anti-CD38 agents also modulates the expression of genes involved in metabolism regulations and cell cycle processes [61].
Another sophisticated mechanism of resistance is the release of CD38-expressing microvesicles in the BM microenvironment after a daratumumab-promoted redistribution of CD38 on the cell surface, promoting a neoplastic PC evasion of immune surveillance [62,63,64]. These microvesicles carry high levels of immunoregulatory molecules, such as CD73, CD39, or programmed death-ligand 1 and miRNAs, and accumulate around Fc receptor-coated cells promoting immune evasion [61]. Moreover, these vesicles can be internalized and influence gene expression or can induce the production of tolerogenic adenosine [61]. Increased serum-soluble CD38 levels might also impair daratumumab efficacy, acting as a decoy receptor and altering its pharmacokinetics and pharmacodynamics [57].
Trogocytosis is an active transfer of membrane fragments containing surface antigens from presenting cells to lymphocytes within immunological synapses and is described in MM resistance through CD38 loss [63,65]. ADCC impairment is involved in resistance to daratumumab, and natural killer (NK) cell depletion causes dysfunctional ADCC [66]. This NK deficiency can be induced by several mechanisms: the direct immunosuppressive actions of neoplastic PCs; the elimination of CD38-expressing NK cells through ADCC mechanisms; and growth arrest mediated by microvesicles derived from neoplastic PCs [61,67,68,69,70]. CDC impairment can be caused by the upregulation of complement inhibitors CD55 and CD59, which reduces daratumumab-induced, complement-dependent cytotoxicity due to increased levels of CD 55 and CD 59, which is another mechanism of resistance [57].
Stromal cells in the BM niche might protect MM PCs by inducing the production of anti-apoptotic molecules [71]. Furthermore, ADCP dysfunction through CD47 amplification in MM cells is related to reduced phagocytosis and tumor escape [72,73,74,75]. In addition, low frequencies of effector T lymphocytes, with reduced expression of the costimulatory molecule CD28 and pro-inflammatory M1 macrophages, are observed in patients with R/R MM or during disease progression [63,76,77].

5. BCMA Functions in Health and Disease

BCMA, also known as TNFRSF17 or CD269, is a member of the tumor necrosis factor superfamily, and its natural ligands are the B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL). BCMA is expressed in mature B lymphocytes and PCs, while it is present at low levels in other cell types [78]. Interactions between BCMA and its ligands promote MM progression, enhancing PC survival and growth through the activation of several signaling pathways, such as AKT, MAPK, and NF-kB [79].
Because of its selective expression on neoplastic PCs, BCMA is considered an excellent target in MM and a potential biomarker of disease monitoring and responsiveness to therapy [80,81]. Currently, three different anti-BCMA therapeutic strategies are available in MM management: antibody–drug conjugates (ADCs) (Table 2), bispecific T cell engagers (BITEs) (Table 3), and chimeric antigen receptor (CAR)-modified T cell therapies (Table 4) (Figure 2).

5.1. Anti-BCMA ADCs

Different from anti-CD38 MoAbs, anti-BCMA antibodies are conjugated with cytotoxic chemotherapeutic agents. A surface interaction between BCMA and the ligand first promotes drug internalization, and then the release of a chemotherapeutic agent that induces the cell death of tumoral cells [82]. Belantamab-mafodotin is the first-in-class anti-BCMA ADC; however, other drugs currently evaluated for R/R MM are AMG224, MEDI2228, and HDP-101 (Table 2).
Belantamab-mafodotin is the first-in-class humanized IgG1 anti-BCMA MoAb conjugated to the microtubule inhibitor monomethyl auristatin F. After internalization, belantamab-mafodotin induces cell death through G2/M cell cycle arrest and caspase 3-dependent apoptosis [83]. The first-in-human, open-label phase I DREAMM-1 clinical trial (NCT02064387) and the open-label, multicenter, two-arm phase II DREAMM-2 study (NCT03525678) have demonstrated impressive anti-tumor activities of belantamab-mafodotin at a dose of 3.4 mg/kg or 2.5 mg/kg every three weeks with an ORR of 60% or 34%, respectively, and median PFS of 12 or 2.8 months in heavily pretreated MM patients [84,85]. The toxicity profile is predictable and manageable, consisting of ocular complications and hematological toxicity, such as thrombocytopenia and anemia [86]. Based on these results, belantamab-mafodotin has been approved in monotherapy for R/R MM patients already exposed to four prior lines of therapy, including proteasome inhibitors, anti-CD38 MoAbs, and IMiDs. Currently, several trials are evaluating the association of belantamab-mafodotin with RD or VD (phase II DREAMM-6, NCT03544281), VRD in transplant-ineligible patients (phase III DREAMM-9, NCT04091126), inducible T cell co-stimulator agonists (aICOS) (phase I/II DREAMM-5, NCT04126200), or pembrolizumab (phase I/II DREAMM-4 NCT03848845) [87].
AMG 224 is a new anti-BCMA IgG1 antibody conjugated with mertansine (DM1), an anti-tubulin maytansinoid. The first-in-human phase I study (NCT02561962) has evaluated the pharmacokinetics and pharmacodynamics, maximum tolerated dose, and safety profile in R/R MM patients with ≥3 lines of prior therapy, including an IMiD and PI. The reported ORR is 23%, and the toxicity profile is similar to that of belantamab-mafodotin [88].
MEDI2228, an anti-BCMA fully human antibody conjugated with pyrrolobenzodiazepine (PBD) dimer, promotes DNA damage and cell death with synergistic activities with bortezomib [89,90]. The first-in-human phase I study (NCT03489525) has investigated MEDI2228 efficacy as a single agent in triple-refractory MM patients, demonstrating a maximum tolerated dose of 0.14 mg/kg every 3 weeks and an ORR of 61%. The toxicity profile is peculiar, with photophobia (54%), thrombocytopenia (32%), rash (30%), increased gamma-glutamyl transferase (24%), dry eye (20%), and pleural effusion (20%) [91].
HDP-101, an anti-BCMA conjugated with α-amantin, interferes with RNA polymerase II subunit A, thus inhibiting cellular transcription. HDP-101 showed pre-clinical activity in myeloma cell lines, with a preferential effect in cells with the deletion of chromosome 17. An early phase I in-human trial of HDP-101 is currently ongoing (NCT04879043) [92].

5.2. Anti-BCMA/CD3 Bispecific MoAbs

Bispecific MoAbs serve as an innovative therapeutic strategy already approved in hematological malignancies, including acute lymphoblastic leukemia [93], and are currently under investigation in MM. Bispecific MoAbs first recruit CD3+ immune effector T cells, and then BCMA+ neoplastic PCs, leading to TCR-independent T cell activation and neoplastic PC death through granzyme and perforin secretion [94,95]. To date, no bispecific antibodies are approved by regulatory agencies for MM treatment, even though several pre-clinical and clinical trials are evaluating their efficacy and safety (Table 3).
Teclistamab (JNJ-64007957), a fully humanized IgG4 anti-BCMA/CD3 bispecific MoAb, has shown activity in pre-clinical and phase I-II studies (NCT03145181 and NCT04557098) in R/R MM, with an ORR of 63%, an MRD negativity rate of 26.7%, and a median PFS of 11.3 months [96,97]. Drug-related toxicity includes infections, neutropenia, anemia, thrombocytopenia, grade I/II cytokine release syndrome, and neurological events [98,99]. Several ongoing clinical studies are evaluating the efficacy and safety of teclistamab in association with other anti-MM drugs in R/R MM (NCT04108195, NCT05243797, NCT05083169, and NCT04722146).
PF-06863135 (PF-3135 or elranatamab), a humanized IgG2a anti-BCMA/CD3 bispecific MoAb, has a dose-dependent action [100] and is currently evaluated in the ongoing phase I MagnetisMM-1 trial (NCT03269136) in patients with pluri-relapsed MM. Elranatamab is subcutaneously administered at different dosage schedules every 7 or 14 days in R/R MM patients, showing a preliminary ORR of 64% [101]. Elranatamab is also under investigation in monotherapy and in association with other anti-MM regimens (NCT05090566, NCT04649359, NCT05317416, NCT05020236, NCT04798586, and NCT05228470).
AMG 420, an investigational BiTE, binds BCMA on MM cells, resulting in T cell-mediated cytotoxicity through the Fas pathway [102]. R/R MM patients treated with AMG 420 in the first-in-human, dose-escalation, phase I trial (NCT02514239) showed an ORR of 30%, with a median duration of response of 9 months. The most common side effects are grade I/II cytokine release syndrome and infections [103]. Despite these promising results, the discomfort of continuous intravenous administration led to the suspension of its development.
REGN5458, an anti-BCMA/CD3 MoAb, induces the T cell-mediated killing of MM cells in vitro and the inhibition of tumor growth in mouse models [104]. The phase 1, dose-escalating trial LINKER-MM1 (NCT03761108) is currently recruiting R/R MM patients who received at least 3 prior therapy regimens. REGN5458 has demonstrated good and durable clinical activity in seven MM patients (ORR, 53.3%) without safety concerns [105].
CC-93269 (EM801), an asymmetric, double-arm, humanized IgG T cell-recruiter MoAb, bivalently binds to BCMA and monovalently to CD3 antigens with dose-dependent anti-tumor activity [106]. Indeed, no R/R MM patients treated with <3 mg responded to therapy in the first human trial (NCT03486067), while subjects treated with 3–6 mg and >6 mg had ORRs of 36% and 89%, respectively [107].
TNB-383B, an anti-BCMA/CD3 bispecific MoAb, has a double anti-BCMA arm with a silenced human IgG4 Fc region and a 10-day half-life in animal models [108]. TNB-383B induces PC death, a dose-dependent T cell activation, reduced cytokine production, and tumor growth arrest [109,110]. The open-label, multicenter, phase 1 trial NCT03933735 is currently ongoing to evaluate its safety, efficacy, and pharmacokinetics in R/R MM patients treated with at least 3 prior regimens. However, no interim results have been reported yet [111].
AMG 701 is similar to AMG 240 with a longer half-life, and promotes potent T cell activation in vitro, with synergistic effects with IMIDS [112]. A clinical phase I trial (NCT03287908) is currently ongoing to evaluate AMG 701 efficacy and safety.

6. Anti-BCMA CAR-T Cells

CAR-T cell treatment is a breakthrough innovative strategy in the management of hematologic malignancies, consisting of engineered autologous T cells for the recognition of tumor cells [113,114]. Adverse effects are caused by immune system hyperactivation and include cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), cytopenia, and infections [115]. Neurocognitive and hypokinetic movement disorders (parkinsonisms) after anti-BCMA CAR-T cell infusion are novel emergence cell therapy-related adverse events and are likely caused by an autologous immune attack against BCMA-expressing neurons and astrocytes in the caudate nucleus [116]. Currently, only idecabtagene vicleucel and ciltacabtagene autoleucel are approved by regulatory agencies for clinical use (Table 4).
Idecabtagene vicleucel (ide-cell; bb2121), an anti-BCMA T cell product, is composed of autologous T cells transfected with a lentiviral vector for the expression of a murine anti-BCMA fragment, a 4-1BB co-stimulatory domain, and a CD3 activation motif. Idecabtagene vicleucel effectively kills in vitro neoplastic PCs regardless of BCMA expression levels [86]. The multi-center phase I trial (NCT02658929) evaluating different bb2121 doses in R/R MM patients who failed at least 3 therapy lines has shown an ORR of 85% with a negative MRD status and a median PFS of 11.8 months. The toxicity profile is similar to that of other CAR-T cell therapies, including neutropenia, anemia, CRS, and neurological toxicity [117]. These results have been confirmed in the pivotal phase II KarMMa clinical trial (NCT03361748) conducted in R/R MM, showing an ORR of 73% or 81.5% and a median PFS of 8.8 or 11.3 months, based on the number of infused cells. Negative MRD status has been achieved in 26% of all treated patients. CAR-T cell expansion occurs at a median of 11 days, and a more intense expansion is associated with deeper responses. CAR-T cells can still be detected 12 months after infusion [118]. KARMMA-2 (NCT03601078) is an ongoing, multicohort, phase II study designed to explore the role of bb2121 in R/R MM (cohort 1), including patients with fewer prior therapy lines characterized by worse prognosis, such as an early progression (within 18 months) from the previous treatment [autologous stem cell transplantation (cohort 2a) or not (cohort 2b)] or an unsatisfactory response after an autologous stem cell transplantation (cohort 2c). The phase I KARMMA-4 (NCT04196491) trial evaluates bb2121 efficacy in high-risk R-ISS III NDMM following standard induction. The phase III KARMMA-3 study (NCT03651128) will compare patients with R/R MM randomized to receive bb2121 or the standard of care.
Ciltacabtagene autoleucel (cilta-cel-JNJ-68284528 or JNJ-4528, previously named LCAR-B38M) is a peculiar second-generation CAR-T product because of the presence of two different heavy-chain variable domains recognizing separate epitopes of BCMA antigens [119]. In the single-arm, open-label, phase I/II LEGEND-2 trial (NCT03090659), enrolled R/R MM patients showed an ORR of 88%, a negative MRD status in 63% of cases, and a median PFS of 20 months for all patients and 28 months for MRD-negative subjects [119,120]. In the phase Ib/II CARTITUDE-1 trial (NCT03548207), a single JNJ-4528 dose of 0.75 × 106 per kg was infused 5–7 days after lymphodepletion, showing an ORR of 97%, a 12-month PFS and OS of 77% and 89%, respectively. CRS and neurological toxicity have occurred in 95% (grade III–V: 4%) and 21% (grade III–IV: 9%) of cases [121,122]. The first update of the phase II CARTITUDE-2 study has demonstrated an ORR of 88.9% in R/R MM patients with an MRD negativity rate of 100% [123]. The phase III CARTITUDE-4 (NCT04181827) study is currently ongoing and aims to compare JNJ-4528 to conventional treatments (PVd: pomalidomide + bortezomib + dexamethasone; or DPd: daratumumab + pomalidomide + dexamethasone) in R/R MM. These ongoing (CARTITUDE-5, NCT04923893 and CARTITUDE-6, NCT05257083) trials will provide insights into the use of JNJ-4528 after VRD induction for the treatment of naïve MM patients not planned for autologous stem cell transplantation and will compare the efficacy and safety of this strategy for VRD induction followed by RD (CARTITUDE-5) or to daratumumab-VRD induction followed by autologous stem cell transplantation (CARTITUDE-6).
CT053, a second-generation CAR-T product, consists of a fully human anti-BCMA single-chain fragment variant, a 4-1BB co-stimulatory domain, and a CD3-zeta signaling domain. Single-arm, open-label, 3-site phase I trials (NCT03716856, NCT03302403, and NCT03380039) are currently ongoing to assess CT053 safety and efficacy in R/R MM, showing a toxicity profile similar to that of CAR-T cell therapies and an ORR of 87.5% [90]. In addition, results from the phase I/II LUMMICAR (NCT03975907) and phase Ib/II LUMMICAR-2 (NCT03915184) trials reported an impressive ORR of 100% and a 12-month PFS of 85.7% in R/R MM (median prior therapy lines, 6) [124,125,126].
Orvacabtagene autoleucel (orva-cel-JCARH125), a fully human CAR-T cell product with a 4-1BB costimulatory domain, is currently being investigated in the multi-center phase I/II EVOLVE trial (NCT03430011) in R/R MM patients treated with at least 3 prior regimens. JCARH125 can induce an ORR in 92% of treated subjects with classic and manageable safety profiles [127].
CART-BCMA, another CAR-T cell product expressing BCMA-specific CAR with tandem TCR and 4-1BB costimulatory domains produced by a lentiviral system, is currently under evaluation in the open-label, single-center, phase I pilot study (NCT02546167), showing lower ORRs compared to other CAR-T cell trials with a higher incidence of severe side effects [128].
The novel second-generation P-BCMA-101 CAR-T product is produced by the piggyBac™ (PB) DNA modification system rather than viral vectors, requiring only plasmid DNA and mRNA with lower production costs and the creation of a purified CAR-T population [129]. Moreover, P-BCMA-101 contains a Centyrin™, a fully human protein with high specificity and binding affinities with smaller, more stable, and potentially less immunogenic activities compared to traditional single-chain variable fragments [130]. P-BCMA-101 has been evaluated in a 3 + 3, dose-escalation, phase I trial (NCT03288493) in R/R MM, showing a very low incidence of adverse effects, including CRS and neurotoxicity, and high efficacy, with an ORR of 83% [130]. Based on these favorable preliminary results, the pivotal phase II PRIME trial (NCT03288493) is ongoing, and no hospital admission is required due to the very low rate of severe and non-severe adverse effects [131].
CT103 is a second-generation, fully human, BCMA-specific CAR-T cell product explored in an open-label, single-arm, phase I trial (ChiCTR1800018137). R/R MM patients treated with this cell therapy showed an ORR of 100% and a 12-month PFS of 58.3%, which is higher in those subjects without extramedullary disease (79.1%) [132]. Updated results from the single-arm, open-label, multicenter, ongoing, phase I/II FUMANBA-1 study (NCT05066646) showed an ORR of 94.9% with MRD negativity in R/R MM patients treated with 5 median prior therapy lines. CT103A also has a manageable toxicity profile [133]. A multi-center, single-arm, phase I FUNAMBA-2 trial (NCT05181501) is investigating the role of CT103A after induction therapy in high-risk NDMM.
MCARH171, a second-generation, human-derived CAR-T cell product containing a BCMA scFv and a 4-1BB co-stimulatory domain, including a truncated epidermal growth factor receptor safety system, has been evaluated in the first-in-human, dose-escalation, phase I study (NCT03070327) in R/R MM, achieving an ORR of 64% and a median duration of response of 106 days [134].
KITE-585 is an autologous, fully human, anti-BCMA CAR-T specifically targeting BCMA-expressing MM cells [135]. The first-in-human, open-label, multicenter, phase I trial NCT03318861 has investigated efficacy and safety in R/R MM subjects, showing no grade III/V CRS or ICANS. Unfortunately, 64.3% of patients experienced disease progression, 21% experienced disease stability, and only 10% experienced a partial response [136].

7. Bispecific CARs

PCs can lose CD19 antigen expression during differentiation [99]; however, neoplastic PCs can retain their expression, thus explaining the potential use of anti-CD19 CAR-T cell therapy in MM [137,138]. Therefore, bispecific CAR-T cells targeting both BCMA and CD19 have been designed to improve tumoral killing. In a preliminary clinical evaluation in R/R MM, all treated patients achieved a response to treatment, with no severe side effects observed [139].
BM38 is another bispecific CAR-T product targeting BCMA and CD38 antigens with 4-1BB signaling and CD3ζ domains. In the Chinese dose-escalating, phase I trial (ChiCTR1800018143) in R/R MM, patients treated with BM38 showed an ORR of 87%, with an MRD negativity status in 87.5% of cases and a median PFS of 17.2 months [140].

8. CAR-NK Cells

NK cells, a subset of innate immune system cells involved in anti-viral and anti-tumor responses, have high cytotoxic activities against different types of cells, and low potential for graft-versus-host disease after allogeneic bone marrow transplantation [141,142]. Therefore, NK cells are increasingly used for immunotherapy because of their low immunogenicity, low risk of CRS, and low ICANS incidence [143,144,145]. Currently, only a few phase I/II (NCT03940833) or early phase I (NCT05008536) trials are investigating the role of anti-BCMA CAR-NK cells in patients with R/R MM [146,147,148].

9. Resistance to Anti-BCMA Therapies

The anti-BCMA therapeutic approach is relatively recent and, consequently, mechanisms of resistance are still poorly understood.
Biallelic or monoallelic BCMA loss on chromosome 16p has been observed in patients treated with anti-BCMA CAR-T cell product, ide-cel [149,150]. Point BCMA mutations have been described as another mechanism of resistance to BCMA therapies [151]. BCMA density on the PC surface is also related to a lack of response and might result from the selective immune pressure exerted by CAR-T cell therapies [152,153]. Furthermore, BCMA can be cleaved from the cell surface by a γ-secretase, that releases a soluble BCMA, acting as a decoy receptor for anti-BCMA treatments [154]. Another mechanism of resistance is the induction of T cell senescence or exhaustion [155,156]. The clinical significance of these mechanisms of resistance to anti-BCMA agents raises concerns regarding whether or not sequential anti-BCMA therapies can be used, even though the few reported cases confirm the efficacy of sequential approaches [157,158,159]. However, larger prospective trials are needed to better define the role of this strategy.
Mechanisms of resistance to CAR-T cells are under investigation, and published data from the single-cell transcriptomic analyses of a single PC leukemia patient treated with anti-BCMA CAR-T cells have shown gene expression modification after therapy involving genes related to proliferation, cytotoxicity, and intracellular signaling pathways [160]. Moreover, the use of bispecific CAR-T cells (e.g., anti-BCMA/CS1) could overcome monospecific CAR-T cell therapy resistance by greatly increasing tumor cell recognition and killing and by reducing the risk of antigen escape [161].

10. Conclusions

Despite the introduction of several immunomodulatory agents and targeted therapies in clinical practice, MM, a malignant PC disorder, remains an incurable disease with a high rate of relapse, even after hematopoietic stem cell transplantation. CD38 and BCMA are excellent therapeutic targets in MM because of their prevalent expression on neoplastic PCs, and multiple types of targeted therapies have been developed, such as MoAbs, ADCs, bispecific antibodies, and CAR-T cells. Based on their impressive results in phase II/III trials in multi-refractory patients—with ORRs higher than 90%—these treatments can dramatically change MM outcomes in the near future, and accelerated approvals have frequently been granted [162,163]. Moreover, other promising therapies still under clinical trial investigation, including bispecific antibodies, are largely expected to be promising treatments because of their clinical efficacy and safety in preliminary phase I/II trials. However, as per the third Newton’s law of action and reaction, once a biological target is under “attack” by a selective drug, this target reacts, thus developing a mechanism of resistance. Therefore, despite the dramatic and promising clinical efficacy and safety of anti-CD38 and anti-BCMA agents, we still do not exactly know how neoplastic cells can escape from drug-induced tumor killing. These mechanisms pose a future challenge in terms of how and when these novel targeted therapies should be used during the long management of an incurable disease, such as MM, where the patient experiences multiple disease relapses and high rates of refractoriness to therapy. Therefore, the best drug combination and timing should be identified to have the highest synergistic effects on tumor cell killing and to reduce the relapse rate. To date, two anti-CD38 MoAbs, daratumumab and isatuximab, are used in early therapeutic lines in both transplant-eligible and ineligible MM patients in real-life settings [27,29,32,46,47]. Belantamab-mafodotin is currently the only approved anti-BCMA ADC for pluri-refractory MM patients [85], and ciltacabtagene autoleucel and idecabtagene vicleucel are the currently approved CAR-T cell therapies [164,165].
In conclusion, MM is still virtually incurable; however, innovative anti-CD38 and anti-BCMA drugs, especially CAR-T cell therapies, might completely revolutionize MM outcomes, which might become a chronic, curable disease in the near future.

Author Contributions

Conceptualization, D.D.N. and C.S.; data curation, R.F., V.G. and B.S.; writing—original draft preparation, D.D.N. and V.G.; writing—review and editing, C.S.; visualization, D.D.N. and V.G. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Padma, V.V. An overview of targeted cancer therapy. BioMedicine 2015, 5, 19. [Google Scholar] [CrossRef] [PubMed]
  2. Padala, S.A.; Barsouk, A.; Barsouk, A.; Rawla, P.; Vakiti, A.; Kolhe, R.; Kota, V.; Ajebo, G.H. Epidemiology, Staging, and Management of Multiple Myeloma. Med. Sci. 2021, 9, 3. [Google Scholar] [CrossRef] [PubMed]
  3. Oracki, S.A.; Walker, J.A.; Hibbs, M.L.; Corcoran, L.M.; Tarlinton, D.M. Plasma cell development and survival. Immunol. Rev. 2010, 237, 140–159. [Google Scholar] [CrossRef] [PubMed]
  4. Dianzani, U.; Funaro, A.; DiFranco, D.; Garbarino, G.; Bragardo, M.; Redoglia, V.; Buonfiglio, D.; De Monte, L.B.; Pileri, A.; Malavasi, F. Interaction between endothelium and CD4+CD45RA+ lymphocytes. Role of the human CD38 molecule. J. Immunol. 1994, 153, 952–959. [Google Scholar]
  5. Deaglio, S.; Morra, M.; Mallone, R.; Ausiello, C.M.; Prager, E.; Garbarino, G.; Dianzani, U.; Stockinger, H.; Malavasi, F. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J. Immunol. 1998, 160, 395–402. [Google Scholar]
  6. Malavasi, F.; Deaglio, S.; Funaro, A.; Ferrero, E.; Horenstein, A.L.; Ortolan, E.; Vaisitti, T.; Aydin, S. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev. 2008, 88, 841–886. [Google Scholar] [CrossRef] [Green Version]
  7. Deaglio, S.; Mehta, K.; Malavasi, F. Human CD38: A (r)evolutionary story of enzymes and receptors. Leuk. Res. 2001, 25, 1–12. [Google Scholar] [CrossRef]
  8. Chini, E.N.; Chini, C.C.S.; Espindola Netto, J.M.; de Oliveira, G.C.; van Schooten, W. The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends Pharmacol. Sci. 2018, 39, 424–436. [Google Scholar] [CrossRef]
  9. Bonello, F.; D’Agostino, M.; Moscvin, M.; Cerrato, C.; Boccadoro, M.; Gay, F. CD38 as an immunotherapeutic target in multiple myeloma. Expert Opin. Biol. Ther. 2018, 18, 1209–1221. [Google Scholar] [CrossRef]
  10. de Weers, M.; Tai, Y.-T.; van der Veer, M.S.; Bakker, J.M.; Vink, T.; Jacobs, D.C.H.; Oomen, L.A.; Peipp, M.; Valerius, T.; Slootstra, J.W.; et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. J. Immunol. 2011, 186, 1840–1848. [Google Scholar] [CrossRef] [Green Version]
  11. Jansen, J.H.M.; Boross, P.; Overdijk, M.B.; van Bueren, J.J.L.; Parren, P.W.H.I.; Leusen, J.H.W. Daratumumab, a Human CD38 Antibody Induces Apoptosis of Myeloma Tumor Cells Via Fc Receptor-Mediated Crosslinking. Blood 2012, 120, 2974. [Google Scholar] [CrossRef]
  12. Kong, S.-Y.; Li, X.-F.; Nahar, S.; Song, W.; de Weers, M.; Parren, P.W.H.I.; Richardson, P.; Munshi, N.C.; Anderson, K.C.; Tai, Y.-T. Daratumumab Directly Induces Human Multiple Myeloma Cell Death and Acts Synergistically with Conventional and Novel Anti-Myeloma Drugs. Blood 2010, 116, 3013. [Google Scholar] [CrossRef]
  13. Lokhorst, H.M.; Plesner, T.; Laubach, J.P.; Nahi, H.; Gimsing, P.; Hansson, M.; Minnema, M.C.; Lassen, U.; Krejcik, J.; Palumbo, A.; et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N. Engl. J. Med. 2015, 373, 1207–1219. [Google Scholar] [CrossRef]
  14. Lonial, S.; Weiss, B.M.; Usmani, S.Z.; Singhal, S.; Chari, A.; Bahlis, N.J.; Belch, A.; Krishnan, A.; Vescio, R.A.; Mateos, M.V.; et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): An open-label, randomised, phase 2 trial. Lancet 2016, 387, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
  15. Usmani, S.Z.; Weiss, B.M.; Plesner, T.; Bahlis, N.J.; Belch, A.; Lonial, S.; Lokhorst, H.M.; Voorhees, P.M.; Richardson, P.G.; Chari, A.; et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma. Blood 2016, 128, 34–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  16. McKeage, K. Daratumumab: First Global Approval. Drugs 2016, 76, 275–281. [Google Scholar] [CrossRef]
  17. Plesner, T.; Arkenau, H.-T.; Gimsing, P.; Krejcik, J.; Lemech, C.; Minnema, M.C.; Lassen, U.; Laubach, J.P.; Palumbo, A.; Lisby, S.; et al. Daratumumab in Combination with Lenalidomide and Dexamethasone in Patients with Relapsed or Relapsed and Refractory Multiple Myeloma: Updated Results of a Phase 1/2 Study (GEN503). Blood 2015, 126, 507. [Google Scholar] [CrossRef]
  18. Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Komarnicki, M.; Suzuki, K.; et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 1319–1331. [Google Scholar] [CrossRef] [Green Version]
  19. Dimopoulos, M.A.; San-Miguel, J.; Belch, A.; White, D.; Benboubker, L.; Cook, G.; Leiba, M.; Morton, J.; Joy Ho, P.; Kim, K.; et al. Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone in relapsed or refractory multiple myeloma: Updated analysis of POLLUX. Haematologica 2018, 103, 2088–2096. [Google Scholar] [CrossRef] [Green Version]
  20. Bahlis, N.J.; Dimopoulos, M.A.; White, D.J.; Benboubker, L.; Cook, G.; Leiba, M.; Ho, P.J.; Kim, K.; Takezako, N.; Moreau, P.; et al. Daratumumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma: Extended follow-up of POLLUX, a randomized, open-label, phase 3 study. Leukemia. 2020, 34, 1875–1884. [Google Scholar] [CrossRef] [Green Version]
  21. Spencer, A.; Lentzsch, S.; Weisel, K.; Avet-Loiseau, H.; Mark, T.M.; Spicka, I.; Masszi, T.; Lauri, B.; Levin, M.D.; Bosi, A.; et al. Daratumumab plus bortezomib and dexamethasone versus bortezomib and dexamethasone in relapsed or refractory multiple myeloma: Updated analysis of CASTOR. Haematologica 2018, 103, 2079–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  22. Chari, A.; Suvannasankha, A.; Fay, J.W.; Arnulf, B.; Kaufman, J.L.; Ifthikharuddin, J.J.; Weiss, B.M.; Krishnan, A.; Lentzsch, S.; Comenzo, R.; et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood 2017, 130, 974–981. [Google Scholar] [CrossRef] [PubMed]
  23. Dimopoulos, M.A.; Terpos, E.; Boccadoro, M.; Delimpasi, S.; Beksac, M.; Katodritou, E.; Moreau, P.; Baldini, L.; Symeonidis, A.; Bila, J.; et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): An open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 801–812. [Google Scholar] [CrossRef] [PubMed]
  24. Chari, A.; Martinez-Lopez, J.; Mateos, M.V.; Bladé, J.; Benboubker, L.; Oriol, A.; Arnulf, B.; Rodriguez-Otero, P.; Pineiro, L.; Jakubowiak, A.; et al. Daratumumab plus carfilzomib and dexamethasone in patients with relapsed or refractory multiple myeloma. Blood 2019, 134, 421–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Usmani, S.Z.; Quach, H.; Mateos, M.-V.; Landgren, O.; Leleu, X.; Siegel, D.; Weisel, K.; Gavriatopoulou, M.; Oriol, A.; Rabin, N.; et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): Updated outcomes from a randomised, multicentre, open-label, phase 3 study. Lancet. Oncol. 2022, 23, 65–76. [Google Scholar] [CrossRef] [PubMed]
  26. Mateos, M.-V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; Kaplan, P.; et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N. Engl. J. Med. 2018, 378, 518–528. [Google Scholar] [CrossRef]
  27. Mateos, M.V.; Cavo, M.; Blade, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE): A randomised, open-label, phase 3 trial. Lancet 2020, 395, 132–141. [Google Scholar] [CrossRef]
  28. Facon, T.; Kumar, S.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl. J. Med. 2019, 380, 2104–2115. [Google Scholar] [CrossRef]
  29. Durie, B.G.M.; Kumar, S.K.; Usmani, S.Z.; Nonyane, B.A.S.; Ammann, E.M.; Lam, A.; Kobos, R.; Maiese, E.M.; Facon, T. Daratumumab-lenalidomide-dexamethasone vs standard-of-care regimens: Efficacy in transplant-ineligible untreated myeloma. Am. J. Hematol. 2020, 95, 1486–1494. [Google Scholar] [CrossRef]
  30. Facon, T.; Kumar, S.K.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA): Overall survival results from a randomised, open-label, phase 3 trial. Lancet. Oncol. 2021, 22, 1582–1596. [Google Scholar] [CrossRef]
  31. Stege, C.A.M.; Nasserinejad, K.; van der Spek, E.; Van Kampen, R.J.W.; Sohne, M.; Thielen, N.; Bilgin, Y.; De Waal, E.G.M.; Ludwig, I.; Leijs, M.B.L.; et al. Efficacy and Tolerability of Ixazomib, Daratumumab and Low Dose Dexamethasone (Ixa Dara dex) in Unfit and Frail Newly Diagnosed Multiple Myeloma (NDMM) Patients; Results of the Interim Efficacy Analysis of the Phase II HOVON 143 Study. Blood 2019, 134, 695. [Google Scholar] [CrossRef]
  32. Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef] [PubMed]
  33. Voorhees, P.M.; Kaufman, J.L.; Laubach, J.; Sborov, D.W.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: The GRIFFIN trial. Blood 2020, 136, 936–945. [Google Scholar] [CrossRef] [PubMed]
  34. Jakubowiak, A.J.; Chari, A.; Lonial, S.; Weiss, B.M.; Comenzo, R.L.; Wu, K.; Khokhar, N.Z.; Wang, J.; Doshi, P.; Usmani, S.Z. Daratumumab (DARA) in combination with carfilzomib, lenalidomide, and dexamethasone (KRd) in patients (pts) with newly diagnosed multiple myeloma (MMY1001): An open-label, phase 1b study. J. Clin. Oncol. 2017, 35, 8000. [Google Scholar] [CrossRef]
  35. Kapoor, P.; Gertz, M.A.; Laplant, B.; Malave, G.C.; Wolfe, E.; Muchtar, E.; Siddiqui, M.A.; Gonsalves, W.I.; Emanuel, A.R.; Kourelis, T.; et al. Phase 2 Trial of Daratumumab, Ixazomib, Lenalidomide and Modified Dose Dexamethasone in Patients with Newly Diagnosed Multiple Myeloma. Blood 2019, 134, 864. [Google Scholar] [CrossRef]
  36. Deckert, J.; Wetzel, M.C.; Bartle, L.M.; Skaletskaya, A.; Goldmacher, V.S.; Vallée, F.; Zhou-Liu, Q.; Ferrari, P.; Pouzieux, S.; Lahoute, C.; et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38+ hematologic malignancies. Clin. Cancer Res. 2014, 20, 4574–4583. [Google Scholar] [CrossRef] [Green Version]
  37. Jiang, H.; Acharya, C.; An, G.; Zhong, M.; Feng, X.; Wang, L.; Dasilva, N.; Song, Z.; Yang, G.; Adrian, F.; et al. SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia 2016, 30, 399–408. [Google Scholar] [CrossRef]
  38. D’Agostino, M.; Salvini, M.; Palumbo, A.; Larocca, A.; Gay, F. Novel investigational drugs active as single agents in multiple myeloma. Expert Opin. Investig. Drugs 2017, 26, 699–711. [Google Scholar] [CrossRef]
  39. Zhu, C.; Song, Z.; Wang, A.; Srinivasan, S.; Yang, G.; Greco, R.; Theilhaber, J.; Shehu, E.; Wu, L.; Yang, Z.Y.; et al. Isatuximab Acts Through Fc-Dependent, Independent, and Direct Pathways to Kill Multiple Myeloma Cells. Front. Immunol. 2020, 11, 1–19. [Google Scholar] [CrossRef]
  40. Wudhikarn, K.; Wills, B.; Lesokhin, A.M. Monoclonal antibodies in multiple myeloma: Current and emerging targets and mechanisms of action. Best Pract. Res. Clin. Haematol. 2020, 33, 101143. [Google Scholar] [CrossRef]
  41. Dimopoulos, M.; Bringhen, S.; Anttila, P.; Capra, M.; Cavo, M.; Cole, C.; Gasparetto, C.; Hungria, V.; Jenner, M.; Vorobyev, V.; et al. Isatuximab as monotherapy and combined with dexamethasone in patients with relapsed/refractory multiple myeloma. Blood 2021, 137, 1154–1165. [Google Scholar] [CrossRef] [PubMed]
  42. Martin, T.; Baz, R.; Benson, D.M.; Lendvai, N.; Wolf, J.; Munster, P.; Lesokhin, A.M.; Wack, C.; Charpentier, E.; Campana, F.; et al. A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma. Blood 2017, 129, 3294–3303. [Google Scholar] [CrossRef] [PubMed]
  43. Mikhael, J.; Richardson, P.; Usmani, S.Z.; Raje, N.; Bensinger, W.; Karanes, C.; Campana, F.; Kanagavel, D.; Dubin, F.; Liu, Q.; et al. A phase 1b study of isatuximab plus pomalidomide/dexamethasone in relapsed/refractory multiple myeloma. Blood 2019, 134, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Attal, M.; Richardson, P.G.; Rajkumar, S.V.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): A randomised, multicentre, open-label, phase 3 study. Lancet 2019, 394, 2096–2107. [Google Scholar] [CrossRef] [PubMed]
  45. Richardson, P.G.; Perrot, A.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; Huang, J.S.-Y.; et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): Follow-up analysis of a randomised, phase 3 study. Lancet Oncol. 2022, 23, 416–427. [Google Scholar] [CrossRef] [PubMed]
  46. Dimopoulos, M.A.; Leleu, X.; Moreau, P.; Richardson, P.G.; Liberati, A.M.; Harrison, S.J.; Miles Prince, H.; Ocio, E.M.; Assadourian, S.; Campana, F.; et al. Isatuximab plus pomalidomide and dexamethasone in relapsed/refractory multiple myeloma patients with renal impairment: ICARIA-MM subgroup analysis. Leukemia 2021, 35, 562–572. [Google Scholar] [CrossRef]
  47. Moreau, P.; Dimopoulos, M.-A.; Mikhael, J.; Yong, K.; Capra, M.; Facon, T.; Hajek, R.; Špička, I.; Baker, R.; Kim, K.; et al. Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): A multicentre, open-label, randomised phase 3 trial. Lancet 2021, 397, 2361–2371. [Google Scholar] [CrossRef]
  48. Moreau, P.; Dimopoulos, M.A.C.; Mikhael, J.; Yong, K.; Capra, M.; Facon, T.; Hajek, R.; Špička, I.; Casca, F.; Mace, S.; et al. VP5-2022: Updated progression-free survival (PFS) and depth of response in IKEMA, a randomized phase III trial of isatuximab, carfilzomib and dexamethasone (Isa-Kd) vs Kd in relapsed multiple myeloma (MM). Ann. Oncol. 2022, 33, 664–665. [Google Scholar] [CrossRef]
  49. Boxhammer, R.; Steidl, S.; Endell, J. Effect of IMiD compounds on CD38 expression on multiple myeloma cells: MOR202, a human CD38 antibody in combination with pomalidomide. J. Clin. Oncol. 2015, 33, 8588. [Google Scholar] [CrossRef]
  50. Raab, M.S.; Engelhardt, M.; Blank, A.; Goldschmidt, H.; Agis, H.; Blau, I.W.; Einsele, H.; Ferstl, B.; Schub, N.; Röllig, C.; et al. MOR202, a novel anti-CD38 monoclonal antibody, in patients with relapsed or refractory multiple myeloma: A first-in-human, multicentre, phase 1–2a trial. Lancet Haematol. 2020, 7, e381–e394. [Google Scholar] [CrossRef]
  51. Tawara, T.; Hasegawa, K.; Sugiura, Y.; Harada, K.; Miura, T.; Hayashi, S.; Tahara, T.; Ishikawa, M.; Yoshida, H.; Kubo, K.; et al. Complement Activation Plays a Key Role in Antibody-Induced Infusion Toxicity in Monkeys and Rats. J. Immunol. 2008, 180, 2294–2298. [Google Scholar] [CrossRef] [Green Version]
  52. Smithson, G.; Zalevsky, J.; Korver, W.; Roepcke, S.; Dahl, M.E.; Zhao, L.; Yuan, J.J.; Mclean, L.; Elias, K.A. TAK-079 is a high affinity monoclonal antibody that effectively mediates CD38+ cell depletion. J. Immunol. 2017, 198, 224-20. [Google Scholar]
  53. Wang, X.; Dahl, M.; Nguyen, D.; Jenks, S.; Cashman, K.; Lee, F.E.-H.; McLean, L.; Sanz, I. The Anti-CD38 Monoclonal Antibody TAK-079 Depletes Antibody Secreting Cells from Normal and SLE Patients—ACR Meeting Abstracts. ACR/ARHP Annu. Meet. 2016, 68, Abstract #1085. Available online: https://acrabstracts.org/abstract/the-anti-cd38-monoclonal-antibody-tak-079-depletes-antibody-secreting-cells-from-normal-and-sle-patients/ (accessed on 4 December 2022).
  54. Krishnan, A.Y.; Patel, K.K.; Hari, P.; Jagannath, S.; Niesvizky, R.; Silbermann, R.W.; Berg, D.T.; Li, Q.; Allikmets, K.; Stockerl-Goldstein, K. A phase Ib study of TAK-079, an investigational anti-CD38 monoclonal antibody (mAb) in patients with relapsed/ refractory multiple myeloma (RRMM): Preliminary results. J. Clin. Oncol. 2020, 38, 8539. [Google Scholar] [CrossRef]
  55. Nijhof, I.S.; Groen, R.W.J.; Lokhorst, H.M.; Van Kessel, B.; Bloem, A.C.; Van Velzen, J.; De Jong-Korlaar, R.; Yuan, H.; Noort, W.A.; Klein, S.K.; et al. Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab. Leukemia 2015, 29, 2039–2049. [Google Scholar] [CrossRef] [PubMed]
  56. Ogiya, D.; Liu, J.; Ohguchi, H.; Kurata, K.; Samur, M.K.; Tai, Y.-T.; Adamia, S.; Ando, K.; Hideshima, T.; Anderson, K.C. The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: Therapeutic implications. Blood 2020, 136, 2334–2345. [Google Scholar] [CrossRef] [PubMed]
  57. Nijhof, I.S.; Casneuf, T.; Van Velzen, J.; Van Kessel, B.; Axel, A.E.; Syed, K.; Groen, R.W.J.; Van Duin, M.; Sonneveld, P.; Minnema, M.C.; et al. CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood 2016, 128, 959–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  58. Van De Donk, N.W.C.J.; Van Kessel-Welmers, B.; Lokhorst, H.M.; Mutis, T.; Adams, H.; Axel, A.; Chiu, C.; Vanhoof, G.; Van Der Borght, K.; Casneuf, T.; et al. Daratumumab in combination with lenalidomide plus dexamethasone results in persistent natural killer (NK) cells with a distinct phenotype and expansion of effector memory t-cells in pollux, a phase 3 randomized study. Blood 2017, 130. [Google Scholar]
  59. Krejcik, J.; Frerichs, K.A.; Nijhof, I.S.; Van Kessel, B.; Van Velzen, J.F.; Bloem, A.C.; Broekmans, M.E.C.; Zweegman, S.; Van Meerloo, J.; Musters, R.J.P.; et al. Monocytes and granulocytes reduce CD38 expression levels on myeloma cells in patients treated with daratumumab. Clin. Cancer Res. 2017, 23, 7498–7511. [Google Scholar] [CrossRef] [Green Version]
  60. Hu, Y.; Liu, H.; Fang, C.; Li, C.; Xhyliu, F.; Dysert, H.; Bodo, J.; Habermehl, G.; Russell, B.E.; Li, W.; et al. Targeting of CD38 by the Tumor Suppressor miR-26a Serves as a Novel Potential Therapeutic Agent in Multiple Myeloma. Cancer Res. 2020, 80, 2031–2044. [Google Scholar] [CrossRef] [Green Version]
  61. Malavasi, F.; Faini, A.C.; Morandi, F.; Castella, B.; Incarnato, D.; Oliviero, S.; Horenstein, A.L.; Massaia, M.; van de Donk, N.W.C.J.; Richardson, P.G. Molecular dynamics of targeting CD38 in multiple myeloma. Br. J. Haematol. 2021, 193, 581–591. [Google Scholar] [CrossRef] [PubMed]
  62. Horenstein, A.L.; Chillemi, A.; Quarona, V.; Zito, A.; Roato, I.; Morandi, F.; Marimpietri, D.; Bolzoni, M.; Toscani, D.; Oldham, R.J.; et al. Nad+-metabolizing ectoenzymes in remodeling tumor–host interactions: The human myeloma model. Cells 2015, 4, 520–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Saltarella, I.; Desantis, V.; Melaccio, A.; Solimando, A.G.; Lamanuzzi, A.; Ria, R.; Storlazzi, C.T.; Mariggiò, M.A.; Vacca, A.; Frassanito, M.A. Mechanisms of Resistance to Anti-CD38 Daratumumab in Multiple Myeloma. Cells 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Desantis, V.; Saltarella, I.; Lamanuzzi, A.; Mariggiò, M.A.; Racanelli, V.; Vacca, A.; Frassanito, M.A. Autophagy: A New Mechanism of Prosurvival and Drug Resistance in Multiple Myeloma. Transl. Oncol. 2018, 11, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
  65. Joly, E.; Hudrisier, D. What is trogocytosis and what is its purpose? Nat. Immunol. 2003, 4, 815. [Google Scholar] [CrossRef]
  66. Nijhof, I.S.; Groen, R.W.J.; Noort, W.A.; Van Kessel, B.; De Jong-Korlaar, R.; Bakker, J.; Van Bueren, J.J.L.; Parren, P.W.H.I.; Lokhorst, H.M.; Van De Donk, N.W.C.J.; et al. Preclinical evidence for the therapeutic potential of CD38-Targeted Immuno-chemotherapy in multiple Myeloma patients refractory to Lenalidomide and Bortezomib. Clin. Cancer Res. 2015, 21, 2802–2810. [Google Scholar] [CrossRef] [Green Version]
  67. Krejcik, J.; Casneuf, T.; Nijhof, I.S.; Verbist, B.; Bald, J.; Plesner, T.; Syed, K.; Liu, K.; van de Donk, N.W.C.J.; Weiss, B.M.; et al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 2016, 128, 384–394. [Google Scholar] [CrossRef] [Green Version]
  68. Naeimi Kararoudi, M.; Nagai, Y.; Elmas, E.; de Souza Fernandes Pereira, M.; Ali, S.A.; Imus, P.H.; Wethington, D.; Borrello, I.M.; Lee, D.A.; Ghiaur, G. CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 2020, 136, 2416–2427. [Google Scholar] [CrossRef]
  69. Bigley, A.B.; Spade, S.; Agha, N.H.; Biswas, S.; Tang, S.; Malik, M.H.; Dai, L.; Masoumi, S.; Patiño-Escobar, B.; Hale, M.; et al. FcεRIγ-negative NK cells persist in vivo and enhance efficacy of therapeutic monoclonal antibodies in multiple myeloma. Blood Adv. 2021, 5, 3021–3031. [Google Scholar] [CrossRef]
  70. Cho, H.; Kim, K.H.; Lee, H.; Kim, C.G.; Chung, H.; Choi, Y.S.; Park, S.-H.; Cheong, J.-W.; Min, Y.H.; Shin, E.-C.; et al. Adaptive Natural Killer Cells Facilitate Effector Functions of Daratumumab in Multiple Myeloma. Clin. Cancer Res. 2021, 27, 2947–2958. [Google Scholar] [CrossRef]
  71. de Haart, S.J.; Holthof, L.; Noort, W.A.; Minnema, M.C.; Emmelot, M.E.; Aarts-Riemens, T.; Doshi, P.; Sasser, K.; Yuan, H.; de Bruijn, J.; et al. Sepantronium bromide (YM155) improves daratumumab-mediated cellular lysis of multiple myeloma cells by abrogation of bone marrow stromal cell-induced resistance. Haematologica 2016, 101, e339–e342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Matozaki, T.; Murata, Y.; Okazawa, H.; Ohnishi, H. Functions and molecular mechanisms of the CD47-SIRPα signalling pathway. Trends Cell Biol. 2009, 19, 72–80. [Google Scholar] [CrossRef] [PubMed]
  73. van Bommel, P.E.; He, Y.; Schepel, I.; Hendriks, M.A.J.M.; Wiersma, V.R.; van Ginkel, R.J.; van Meerten, T.; Ammatuna, E.; Huls, G.; Samplonius, D.F.; et al. CD20-selective inhibition of CD47-SIRPα “don’t eat me” signaling with a bispecific antibody-derivative enhances the anticancer activity of daratumumab, alemtuzumab and obinutuzumab. Oncoimmunology 2018, 7, e1386361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Rendtlew Danielsen, J.M.; Knudsen, L.M.; Dahl, I.M.; Lodahl, M.; Rasmussen, T. Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma. Br. J. Haematol. 2007, 138, 756–760. [Google Scholar] [CrossRef]
  75. Busch, L.; Mougiakakos, D.; Büttner-Herold, M.; Müller, M.J.; Volmer, D.A.; Bach, C.; Fabri, M.; Bittenbring, J.T.; Neumann, F.; Boxhammer, R.; et al. Lenalidomide enhances MOR202-dependent macrophage-mediated effector functions via the vitamin D pathway. Leukemia 2018, 32, 2445–2458. [Google Scholar] [CrossRef]
  76. Neri, P.; Maity, R.; Tagoug, I.; Duggan, P.; McCulloch, S.; Jimenez-Zepeda, V.; Tay, J.; Boise, L.H.; Thakurta, A.; Bahlis, N.J. Single Cell Resolution Profiling Defines the Innate and Adaptive Immune Repertoires Modulated by Daratumumab and IMiDs Treatment in Multiple Myeloma (MM). Blood 2017, 130, 123. [Google Scholar]
  77. Casneuf, T.; Adams, H.C., 3rd; van de Donk, N.W.C.J.; Abraham, Y.; Bald, J.; Vanhoof, G.; Van der Borght, K.; Smets, T.; Foulk, B.; Nielsen, K.C.; et al. Deep immune profiling of patients treated with lenalidomide and dexamethasone with or without daratumumab. Leukemia 2021, 35, 573–584. [Google Scholar] [CrossRef]
  78. Novak, A.J.; Darce, J.R.; Arendt, B.K.; Harder, B.; Henderson, K.; Kindsvogel, W.; Gross, J.A.; Greipp, P.R.; Jelinek, D.F. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: A mechanism for growth and survival. Blood 2004, 103, 689–694. [Google Scholar] [CrossRef] [Green Version]
  79. Tai, Y.T.; Acharya, C.; An, G.; Moschetta, M.; Zhong, M.Y.; Feng, X.; Cea, M.; Cagnetta, A.; Wen, K.; Van Eenennaam, H.; et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood 2016, 127, 3225–3236. [Google Scholar] [CrossRef] [Green Version]
  80. Sanchez, E.; Li, M.; Kitto, A.; Li, J.; Wang, C.S.; Kirk, D.T.; Yellin, O.; Nichols, C.M.; Dreyer, M.P.; Ahles, C.P.; et al. Serum B-cell maturation antigen is elevated in multiple myeloma and correlates with disease status and survival. Br. J. Haematol. 2012, 158, 727–738. [Google Scholar] [CrossRef]
  81. Udd, K.; Soof, C.; Etessami, S.; Rahbari, A.; Gross, Z.; Casas, C.; Ghermezi, M.; Sanchez, E.; Li, M.; Wang, C.; et al. Changes in Serum B-Cell Maturation Antigen Levels Are a Rapid and Reliable Indicator of Treatment Efficacy for Patients with Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2017, 17, e19–e20. [Google Scholar] [CrossRef]
  82. Coats, S.; Williams, M.; Kebble, B.; Dixit, R.; Tseng, L.; Yao, N.S.; Tice, D.A.; Soria, J.C. Antibody-drug conjugates: Future directions in clinical and translational strategies to improve the therapeutic index. Clin. Cancer Res. 2019, 25, 5441–5448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  83. Tai, Y.T.; Mayes, P.A.; Acharya, C.; Zhong, M.Y.; Cea, M.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.; Fieles, W.; et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 2014, 123, 3128–3138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  84. Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Hoos, A.; Gupta, I.; Bragulat, V.; et al. Antibody–drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: An update on safety and efficacy from dose expansion phase I study. Blood Cancer J. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
  85. Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [CrossRef] [PubMed]
  86. Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Sborov, D.; Suvannasankha, A.; et al. Longer term outcomes with single-agent belantamab mafodotin in patients with relapsed or refractory multiple myeloma: 13-month follow-up from the pivotal DREAMM-2 study. Cancer 2021, 127, 4198–4212. [Google Scholar] [CrossRef] [PubMed]
  87. Trudel, S.; Nooka, A.; Fecteau, D.; Talekar, M.; Jewell, R.C.; Williams, D.; Evans, J.; Opalinska, J. DREAMM 4: A phase I/II single-arm open-label study to explore safety and clinical activity of belantamab mafodotin (GSK2857916) administered in combination with pembrolizumab in patients with relapsed/refractory multiple myeloma (RRMM). Ann. Oncol. 2019, 30, v447. [Google Scholar] [CrossRef]
  88. Lee, H.C.; Raje, N.S.; Landgren, O.; Upreti, V.V.; Wang, J.; Avilion, A.A.; Hu, X.; Rasmussen, E.; Ngarmchamnanrith, G.; Fujii, H.; et al. Phase 1 study of the anti-BCMA antibody-drug conjugate AMG 224 in patients with relapsed/refractory multiple myeloma. Leukemia 2021, 35, 255–258. [Google Scholar] [CrossRef]
  89. Tai, Y.-T.; Xing, L.; Lin, L.; Yu, T.; Cho, S.-F.; Wen, K.; Kinneer, K.; Munshi, N.; Anderson, K.C. MEDI2228, a novel BCMA pyrrolobenzodiazepine antibody drug conjugate, overcomes drug resistance and synergizes with bortezomib and DNA damage response inhibitors in multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, e154–e155. [Google Scholar] [CrossRef]
  90. Kinneer, K.; Flynn, M.; Thomas, S.B.; Meekin, J.; Varkey, R.; Xiao, X.; Zhong, H.; Breen, S.; Hynes, P.G.; Fleming, R.; et al. Preclinical assessment of an antibody–PBD conjugate that targets BCMA on multiple myeloma and myeloma progenitor cells. Leukemia 2019, 33, 766–771. [Google Scholar] [CrossRef]
  91. Kumar, S.K.; Migkou, M.; Bhutani, M.; Spencer, A.; Ailawadhi, S.; Kalff, A.; Walcott, F.; Pore, N.; Gibson, D.; Wang, F.; et al. Phase 1, First-in-Human Study of MEDI2228, a BCMA-Targeted ADC in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2020, 136, 26–27. [Google Scholar] [CrossRef]
  92. Singh, R.K.; Jones, R.J.; Hong, S.; Shirazi, F.; Wang, H.; Kuiatse, I.; Pahl, A.; Orlowski, R.Z. HDP101, a Novel B-Cell Maturation Antigen (BCMA)-Targeted Antibody Conjugated to α-Amanitin, Is Active Against Myeloma with Preferential Efficacy Against Pre-Clinical Models of Deletion 17p. Blood 2018, 132, 593. [Google Scholar] [CrossRef]
  93. Przepiorka, D.; Ko, C.W.; Deisseroth, A.; Yancey, C.L.; Candau-Chacon, R.; Chiu, H.J.; Gehrke, B.J.; Gomez-Broughton, C.; Kane, R.C.; Kirshner, S.; et al. FDA approval: Blinatumomab. Clin. Cancer Res. 2015, 21, 4035–4039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  94. Verkleij, C.P.M.; Frerichs, K.A.; Broekmans, M.; Absalah, S.; Maas-Bosman, P.W.C.; Kruyswijk, S.; Nijhof, I.S.; Mutis, T.; Zweegman, S.; van de Donk, N.W.C.J. T-cell redirecting bispecific antibodies targeting BCMA for the treatment of multiple myeloma. Oncotarget 2020, 11, 4076–4081. [Google Scholar] [CrossRef] [PubMed]
  95. Suurs, F.V.; Lub-de Hooge, M.N.; de Vries, E.G.E.; de Groot, D.J.A. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol. Ther. 2019, 201, 103–119. [Google Scholar] [CrossRef]
  96. Pillarisetti, K.; Powers, G.; Luistro, L.; Babich, A.; Baldwin, E.; Li, Y.; Zhang, X.; Mendonça, M.; Majewski, N.; Nanjunda, R.; et al. Teclistamab is an active T cell-redirecting bispecific antibody against B-cell maturation antigen for multiple myeloma. Blood Adv. 2020, 4, 4538–4549. [Google Scholar] [CrossRef]
  97. Garfall, A.L.; Usmani, S.Z.; Mateos, M.-V.; Nahi, H.; van de Donk, N.W.C.J.; San-Miguel, J.F.; Oriol Rocafiguera, A.; Rosinol, L.; Chari, A.; Bhutani, M.; et al. Updated Phase 1 Results of Teclistamab, a B-Cell Maturation Antigen (BCMA) x CD3 Bispecific Antibody, in Relapsed and/or Refractory Multiple Myeloma (RRMM). Blood 2020, 136, 27. [Google Scholar] [CrossRef]
  98. Moreau, P.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef]
  99. Usmani, S.Z.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Rosinol, L.; Chari, A.; Bhutani, M.; Karlin, L.; et al. Teclistamab, a B-cell maturation antigen × CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): A multicentre, open-label, single-arm, phase 1 study. Lancet 2021, 398, 665–674. [Google Scholar] [CrossRef]
  100. Panowski, S.H.; Kuo, T.; Chen, A.; Geng, T.; Van Blarcom, T.J.; Lindquist, K.; Chen, W.; Chaparro-Riggers, J.; Sasu, B. Preclinical Evaluation of a Potent Anti-Bcma CD3 Bispecific Molecule for the Treatment of Multiple Myeloma. Blood 2016, 128, 383. [Google Scholar] [CrossRef]
  101. Jakubowiak, A.J.; Bahlis, N.J.; Raje, N.S.; Costello, C.; Dholaria, B.R.; Solh, M.M.; Levy, M.Y.; Tomasson, M.H.; Dube, H.; Damore, M.A.; et al. Elranatamab, a BCMA-targeted T-cell redirecting immunotherapy, for patients with relapsed or refractory multiple myeloma: Updated results from MagnetisMM-1. J. Clin. Oncol. 2022, 40, 8014. [Google Scholar] [CrossRef]
  102. Hipp, S.; Tai, Y.T.; Blanset, D.; Deegen, P.; Wahl, J.; Thomas, O.; Rattel, B.; Adam, P.J.; Anderson, K.C.; Friedrich, M. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia 2017, 31, 1743–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Topp, M.S.; Duell, J.; Zugmaier, G.; Attal, M.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; et al. Anti–B-cell maturation antigen bite molecule AMG 420 induces responses in multiple myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef] [PubMed]
  104. DiLillo, D.J.; Olson, K.; Mohrs, K.; Meagher, T.C.; Bray, K.; Sineshchekova, O.; Startz, T.; Kuhnert, J.; Retter, M.W.; Godin, S.; et al. A BCMAxCD3 bispecific T cell–engaging antibody demonstrates robust antitumor efficacy similar to that of anti-BCMA CAR T cells. Blood Adv. 2021, 5, 1291–1304. [Google Scholar] [CrossRef] [PubMed]
  105. Madduri, D.; Rosko, A.; Brayer, J.; Zonder, J.; Bensinger, W.I.; Li, J.; Xu, L.; Adriaens, L.; Chokshi, D.; Zhang, W.; et al. REGN5458, a BCMA x CD3 Bispecific Monoclonal Antibody, Induces Deep and Durable Responses in Patients with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2020, 136, 41–42. [Google Scholar] [CrossRef]
  106. Seckinger, A.; Delgado, J.A.; Moser, S.; Moreno, L.; Neuber, B.; Grab, A.; Lipp, S.; Merino, J.; Prosper, F.; Emde, M.; et al. Target Expression, Generation, Preclinical Activity, and Pharmacokinetics of the BCMA-T Cell Bispecific Antibody EM801 for Multiple Myeloma Treatment. Cancer Cell 2017, 31, 396–410. [Google Scholar] [CrossRef]
  107. Costa, L.J.; Wong, S.W.; Bermúdez, A.; de la Rubia, J.; Mateos, M.-V.; Ocio, E.M.; Rodríguez-Otero, P.; San-Miguel, J.; Li, S.; Sarmiento, R.; et al. First Clinical Study of the B-Cell Maturation Antigen (BCMA) 2 + 1 T Cell Engager (TCE) CC-93269 in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Interim Results of a Phase 1 Multicenter Trial. Blood 2019, 134, 143. [Google Scholar] [CrossRef]
  108. Buelow, B.; Choudhry, P.; Clarke, S.; Dang, K.; Davison, L.; Force Aldred, S.; Harris, K.; Pham, D.; Pratap, P.; Rangaswamy, U.; et al. Development of a fully human t-cell engaging bispecific antibody for the treatment of multiple myeloma. J. Clin. Oncol. 2018, 36, 60. [Google Scholar] [CrossRef]
  109. Kumar, S.; D’Souza, A.; Shah, N.; Rodriguez, C.; Voorhees, P.M.; Bueno, O.F.; Buelow, B.; Freise, K.J.; Yue, S.; Pothacamury, R.K.; et al. A Phase 1 First-in-Human Study of Tnb-383B, a BCMA × CD3 Bispecific T-Cell Redirecting Antibody, in Patients with Relapsed/Refractory Multiple Myeloma. Blood. 2021, 138, 900. [Google Scholar] [CrossRef]
  110. Foureau, D.M.; Bhutani, M.; Robinson, M.; Guo, F.; Pham, D.; Force Aldred, S.; Buelow, B.; Rigby, K.; Tjaden, E.; Leonidas, M.; et al. Ex Vivo Assessment of Tnb-383B, a Bcma-Bispecific Antibody, Against Primary Tumor and Endogenous T Cells from Relapsing Multiple Myeloma Patients. Blood 2018, 132, 1940. [Google Scholar] [CrossRef]
  111. Buelow, B.; D’Souza, A.; Rodriguez, C.; Vij, R.; Nath, R.; Snyder, M.; Pham, D.; Patel, A.B.; Iyer, S. TNB383B.0001: A Multicenter, Phase 1, Open-Label, Dose-Escalation Andexpansion Study of TNB-383B, a Bispecific Antibodytargeting BCMA in Subjects with Relapsed or Refractorymultiple Myeloma. Blood 2019, 134, 1874. [Google Scholar] [CrossRef]
  112. Cho, S.-F.; Lin, L.; Xing, L.; Wen, K.; Yu, T.; Hsieh, P.A.; Li, Y.; Munshi, N.C.; Wahl, J.; Matthes, K.; et al. AMG 701 Potently Induces Anti-Multiple Myeloma (MM) Functions of T Cells and IMiDs Further Enhance Its Efficacy to Prevent MM Relapse In Vivo. Blood 2019, 134, 135. [Google Scholar] [CrossRef]
  113. Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am. J. Hematol. 2019, 94, S3–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  114. Shah, N.; Chari, A.; Scott, E.; Mezzi, K.; Usmani, S.Z. B-cell maturation antigen (BCMA) in multiple myeloma: Rationale for targeting and current therapeutic approaches. Leukemia 2020, 34, 985–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  115. Adkins, S. CAR T-Cell Therapy: Adverse Events and Management. J. Adv. Pract. Oncol. 2019, 10, 21–28. [Google Scholar] [PubMed]
  116. Van Oekelen, O.; Aleman, A.; Upadhyaya, B.; Schnakenberg, S.; Madduri, D.; Gavane, S.; Teruya-Feldstein, J.; Crary, J.F.; Fowkes, M.E.; Stacy, C.B.; et al. Neurocognitive and hypokinetic movement disorder with features of parkinsonism after BCMA-targeting CAR-T cell therapy. Nat. Med. 2021, 27, 2099–2103. [Google Scholar] [CrossRef] [PubMed]
  117. Raje, N.; Berdeja, J.; Lin, Y.; Siegel, D.; Jagannath, S.; Madduri, D.; Liedtke, M.; Rosenblatt, J.; Maus, M.V.; Turka, A.; et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019, 380, 1726–1737. [Google Scholar] [CrossRef]
  118. Munshi, N.C.; Anderson, L.D.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
  119. Zhao, W.H.; Liu, J.; Wang, B.Y.; Chen, Y.X.; Cao, X.M.; Yang, Y.; Zhang, Y.L.; Wang, F.X.; Zhang, P.Y.; Lei, B.; et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 2018, 11, 141. [Google Scholar] [CrossRef] [Green Version]
  120. Wang, B.-Y.; Zhao, W.-H.; Liu, J.; Chen, Y.-X.; Cao, X.-M.; Yang, Y.; Zhang, Y.-L.; Wang, F.-X.; Zhang, P.-Y.; Lei, B.; et al. Long-Term Follow-up of a Phase 1, First-in-Human Open-Label Study of LCAR-B38M, a Structurally Differentiated Chimeric Antigen Receptor T (CAR-T) Cell Therapy Targeting B-Cell Maturation Antigen (BCMA), in Patients (pts) with Relapsed/Refractory Multiple. Blood 2019, 134, 579. [Google Scholar] [CrossRef]
  121. Madduri, D.; Berdeja, J.G.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; O’Donnell, E.; et al. CARTITUDE-1: Phase 1b/2 Study of Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T Cell Therapy, in Relapsed/Refractory Multiple Myeloma. Blood 2020, 136, 22–25. [Google Scholar] [CrossRef]
  122. Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef] [PubMed]
  123. Van de Donk, N.W.C.J.; Delforge, M.; Agha, M.; Cohen, A.D.; Cohen, Y.C.; Hillengass, J.; Anguille, S.; Kerre, T.; Roeloffzen, W.; Schecter, J.M.; et al. CARTITUDE-2: Efficacy and Safety of Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen (BCMA)-Directed Chimeric Antigen Receptor T-Cell Therapy, in Patients with Multiple Myeloma and Early Relapse after Initial Therapy. Blood 2021, 138, 2910. [Google Scholar]
  124. Chen, W.; Fu, C.; Cai, Z.; Li, Z.; Wang, H.; Yan, L.; Wu, Y.; Shi, X.; Gao, W.; Yan, S.; et al. Sustainable Efficacy and Safety Results from Lummicar Study 1: A Phase 1/2 Study of Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (CT053) in Chinese Subjects with Relapsed and/or Refractory Multiple Myeloma. Blood 2021, 138, 2821. [Google Scholar] [CrossRef]
  125. Chen, W. Results From LUMMICAR-2: A Phase 1b/2 Study of Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (CT053) in Patients With Relapsed and/or Refractory Multiple Myeloma. Clin. Adv. Hematol. Oncol. 2021, 19, 18–19. [Google Scholar]
  126. Kumar, S.K.; Baz, R.C.; Orlowski, R.Z.; Anderson, L.D., Jr.; Ma, H.; Shrewsbury, A.; Croghan, K.A.; Bilgi, M.; Kansagra, A.; Kapoor, P.; et al. Results from Lummicar-2: A Phase 1b/2 Study of Fully Human B-Cell Maturation Antigen-Specific CAR T Cells (CT053) in Patients with Relapsed and/or Refractory Multiple Myeloma. Blood 2020, 136, 28–29. [Google Scholar]
  127. Mailankody, S.; Jakubowiak, A.J.; Htut, M.; Costa, L.J.; Lee, K.; Ganguly, S.; Kaufman, J.L.; Siegel, D.S.D.; Bensinger, W.; Cota, M.; et al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): Update of the phase 1/2 EVOLVE study (NCT03430011). J. Clin. Oncol. 2020, 38, 8504. [Google Scholar] [CrossRef]
  128. Cohen, A.D.; Garfall, A.L.; Stadtmauer, E.A.; Melenhorst, J.J.; Lacey, S.F.; Lancaster, E.; Vogl, D.T.; Weiss, B.M.; Dengel, K.; Nelson, A.; et al. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J. Clin. Investig. 2019, 129, 2210–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  129. Zhao, S.; Jiang, E.; Chen, S.; Gu, Y.; Shangguan, A.J.; Lv, T.; Luo, L.; Yu, Z. PiggyBac transposon vectors: The tools of the human gene encoding. Transl. Lung Cancer Res. 2016, 5, 120–125. [Google Scholar]
  130. Gregory, T.; Cohen, A.D.; Costello, C.L.; Ali, S.A.; Berdeja, J.G.; Ostertag, E.M.; Martin, C.; Shedlock, D.J.; Resler, M.L.; Spear, M.A.; et al. Efficacy and Safety of P-Bcma-101 CAR-T Cells in Patients with Relapsed/Refractory (r/r) Multiple Myeloma (MM). Blood 2018, 132, 1012. [Google Scholar] [CrossRef]
  131. Costello, C.L.; Gregory, T.K.; Ali, S.A.; Berdeja, J.G.; Patel, K.K.; Shah, N.D.; Ostertag, E.; Martin, C.; Ghoddusi, M.; Shedlock, D.J.; et al. Phase 2 Study of the Response and Safety of P-Bcma-101 CAR-T Cells in Patients with Relapsed/Refractory (r/r) Multiple Myeloma (MM) (PRIME). Blood 2019, 134, 3184. [Google Scholar] [CrossRef]
  132. Wang, D.; Wang, J.; Hu, G.; Wang, W.; Xiao, Y.; Cai, H.; Jiang, L.; Meng, L.; Yang, Y.; Zhou, X.; et al. A phase 1 study of a novel fully human BCMA-targeting CAR (CT103A) in patients with relapsed/refractory multiple myeloma. Blood 2021, 137, 2890–2901. [Google Scholar] [CrossRef] [PubMed]
  133. Li, C.; Wang, D.; Song, Y.; Li, J.; Huang, H.; Chen, B.; Liu, J.; Hu, K.; Ren, H.; Zhang, X.; et al. S187: Updated Phase 1/2 Data of Safety and Efficacy of Ct103a, Fully Human Bcma-Directed Car T Cells, in Relapsed/Refractory Multiple Myeloma. HemaSphere 2022, 6, 88–89. [Google Scholar] [CrossRef]
  134. Mailankody, S.; Ghosh, A.; Staehr, M.; Purdon, T.J.; Roshal, M.; Halton, E.; Diamonte, C.; Pineda, J.; Anant, P.; Bernal, Y.; et al. Clinical Responses and Pharmacokinetics of MCARH171, a Human-Derived Bcma Targeted CAR T Cell Therapy in Relapsed/Refractory Multiple Myeloma: Final Results of a Phase I Clinical Trial. Blood 2018, 132, 959. [Google Scholar] [CrossRef]
  135. Adams, G.B.; Feng, J.; Ghogha, A.; Mardiros, A.; Rodriguez, R.; Spindler, T.J.; Wiltzius, J.; Polverino, T. Abstract 2135: Selectivity and specificity of engineered T cells expressing KITE-585, a chimeric antigen receptor targeting B-cell maturation antigen (BCMA). Cancer Res. 2017, 77, 2135. [Google Scholar] [CrossRef]
  136. Cornell, R.F.; Bishop, M.R.; Kumar, S.; Giralt, S.A.; Nooka, A.K.; Larson, S.M.; Locke, F.L.; Raje, N.S.; Lei, L.; Dong, J.; et al. A phase 1, multicenter study evaluating the safety and efficacy of KITE-585, an autologous anti-BCMA CAR T-cell therapy, in patients with relapsed/refractory multiple myeloma. Am. J. Cancer Res. 2021, 11, 3285–3293. [Google Scholar]
  137. Garfall, A.L.; Stadtmauer, E.A.; Hwang, W.T.; Lacey, S.F.; Melenhorst, J.J.; Krevvata, M.; Carroll, M.P.; Matsui, W.H.; Wang, Q.; Dhodapkar, M.V.; et al. Anti-CD19 CAR t cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 2018, 3, e120505. [Google Scholar] [CrossRef] [Green Version]
  138. Garfall, A.L.; Maus, M.V.; Hwang, W.-T.; Lacey, S.F.; Mahnke, Y.D.; Melenhorst, J.J.; Zheng, Z.; Vogl, D.T.; Cohen, A.D.; Weiss, B.M.; et al. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. N. Engl. J. Med. 2015, 373, 1040–1047. [Google Scholar] [CrossRef]
  139. Zhang, H.; Gao, L.; Liu, L.; Wang, J.; Wang, S.; Gao, L.; Zhang, C.; Liu, Y.; Kong, P.; Liu, J.; et al. A Bcma and CD19 Bispecific CAR-T for Relapsed and Refractory Multiple Myeloma. Blood 2019, 134, 3147. [Google Scholar] [CrossRef]
  140. Mei, H.; Li, C.; Jiang, H.; Zhao, X.; Huang, Z.; Jin, D.; Guo, T.; Kou, H.; Liu, L.; Tang, L.; et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. J. Hematol. Oncol. 2021, 14, 161. [Google Scholar] [CrossRef]
  141. Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural killer cells: Development, maturation, and clinical utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef] [PubMed]
  142. Venglar, O.; Bago, J.R.; Motais, B.; Hajek, R.; Jelinek, T. Natural Killer Cells in the Malignant Niche of Multiple Myeloma. Front. Immunol. 2022, 12, 5710. [Google Scholar] [CrossRef] [PubMed]
  143. Moretta, L.; Locatelli, F.; Pende, D.; Marcenaro, E.; Mingari, M.C.; Moretta, A. Killer Ig-like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Blood 2011, 117, 764–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  144. Miller, J.S.; Soignier, Y.; Panoskaltsis-Mortari, A.; McNearney, S.A.; Yun, G.H.; Fautsch, S.K.; McKenna, D.; Le, C.; Defor, T.E.; Burns, L.J.; et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005, 105, 3051–3057. [Google Scholar] [CrossRef] [Green Version]
  145. Yu, B.; Jiang, T.; Liu, D. BCMA-targeted immunotherapy for multiple myeloma. J. Hematol. Oncol. 2020, 13, 125. [Google Scholar] [CrossRef]
  146. Imai, C.; Iwamoto, S.; Campana, D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005, 106, 376–383. [Google Scholar] [CrossRef] [Green Version]
  147. Altvater, B.; Landmeier, S.; Pscherer, S.; Temme, J.; Schweer, K.; Kailayangiri, S.; Campana, D.; Juergens, H.; Pule, M.; Rossig, C. 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin. Cancer Res. 2009, 15, 4857–4866. [Google Scholar] [CrossRef] [Green Version]
  148. Rezvani, K.; Rouce, R.; Liu, E.; Shpall, E. Engineering Natural Killer Cells for Cancer Immunotherapy. Mol. Ther. 2017, 25, 1769–1781. [Google Scholar] [CrossRef]
  149. Samur, M.K.; Fulciniti, M.; Aktas Samur, A.; Bazarbachi, A.H.; Tai, Y.T.; Prabhala, R.; Alonso, A.; Sperling, A.S.; Campbell, T.; Petrocca, F.; et al. Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nat. Commun. 2021, 12, 868. [Google Scholar] [CrossRef]
  150. Da Vià, M.C.; Dietrich, O.; Truger, M.; Arampatzi, P.; Duell, J.; Heidemeier, A.; Zhou, X.; Danhof, S.; Kraus, S.; Chatterjee, M.; et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma. Nat. Med. 2021, 27, 616–619. [Google Scholar] [CrossRef]
  151. Lee, H.; Maity, R.; Ahn, S.; Leblay, N.; Tilmont, R.; Barakat, E.; Neri, P.; Bahlis, N. OAB-005: Point mutations in BCMA extracellular domain mediate resistance to BCMA targeting immune therapies. Clin. Lymphoma Myeloma Leuk. 2022, 22, S3–S4. [Google Scholar] [CrossRef]
  152. Green, D.J.; Pont, M.; Cowan, A.J.; Cole, G.O.; Sather, B.D.; Nagengast, A.M.; Song, X.; Thomas, S.; Wood, B.L.; Blake, M.L.; et al. Response to Bcma CAR-T Cells Correlates with Pretreatment Target Antigen Density and Is Improved By Small Molecule Inhibition of Gamma Secretase. Blood 2019, 134, 1856. [Google Scholar] [CrossRef]
  153. Xu, X.; Sun, Q.; Liang, X.; Chen, Z.; Zhang, X.; Zhou, X.; Li, M.; Tu, H.; Liu, Y.; Tu, S.; et al. Mechanisms of Relapse After CD19 CAR T-Cell Therapy for Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies. Front. Immunol. 2019, 10, 2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  154. Laurent, S.A.; Hoffmann, F.S.; Kuhn, P.H.; Cheng, Q.; Chu, Y.; Schmidt-Supprian, M.; Hauck, S.M.; Schuh, E.; Krumbholz, M.; Rübsamen, H.; et al. γ-secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. 2015, 6, 7333. [Google Scholar]
  155. Leblay, N.; Maity, R.; Barakat, E.; McCulloch, S.; Duggan, P.; Jimenez-Zepeda, V.; Bahlis, N.J.; Neri, P. Cite-Seq Profiling of T Cells in Multiple Myeloma Patients Undergoing BCMA Targeting CAR-T or Bites Immunotherapy. Blood 2020, 136, 11–12. [Google Scholar]
  156. Puertas, B.; Mateos, M.V.; González-Calle, V. Anti-BCMA CAR T-cell Therapy: Changing the Natural History of Multiple Myeloma. Hemasphere 2022, 6, e691. [Google Scholar] [CrossRef]
  157. Cohen, A.D.; Garfall, A.L.; Dogan, A.; Lacey, S.F.; Martin, C.; Lendvai, N.; Vogl, D.T.; Spear, M.; Lesokhin, A.M. Serial treatment of relapsed/refractory multiple myeloma with different BCMA-targeting therapies. Blood Adv. 2019, 3, 2487–2490. [Google Scholar] [CrossRef] [Green Version]
  158. Gazeau, N.; Beauvais, D.; Yakoub-Agha, I.; Mitra, S.; Campbell, T.B.; Facon, T.; Manier, S. Effective anti-BCMA retreatment in multiple myeloma. Blood Adv. 2021, 5, 3016–3020. [Google Scholar] [CrossRef]
  159. Li, C.; Zhou, X.; Wang, J.; Hu, G.; Yang, Y.; Meng, L.; Hong, Z.; Chen, L.; Zhou, J. Clinical Responses and Pharmacokinetics of fully human BCMA Targeting CAR T Cell Therapy in Relapsed/Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, e23–e24. [Google Scholar] [CrossRef]
  160. Li, X.; Guo, X.; Zhu, Y.; Wei, G.; Zhang, Y.; Li, X.; Xu, H.; Cui, J.; Wu, W.; He, J.; et al. Single-Cell Transcriptomic Analysis Reveals BCMA CAR-T Cell Dynamics in a Patient with Refractory Primary Plasma Cell Leukemia. Mol. Ther. 2021, 29, 645–657. [Google Scholar] [CrossRef]
  161. Zah, E.; Nam, E.; Bhuvan, V.; Tran, U.; Ji, B.Y.; Gosliner, S.B.; Wang, X.; Brown, C.E.; Chen, Y.Y. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat. Commun. 2020, 11, 2283. [Google Scholar] [CrossRef] [PubMed]
  162. Callander, N.S.; Baljevic, M.; Adekola, K.; Anderson, L.D.; Campagnaro, E.; Castillo, J.J.; Costello, C.; Devarakonda, S.; Elsedawy, N.; Faiman, M.; et al. Multiple Myeloma, Version 3.2022: Featured Updates to the NCCN Guidelines. JNCCN J. Natl. Compr. Cancer Netw. 2022, 20, 8–19. [Google Scholar] [CrossRef] [PubMed]
  163. Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G.; Delforge, M.; Hájek, R.; Schjesvold, F.; Cavo, M.; et al. Multiple myeloma: EHA-ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 2021, 32, 309–322. [Google Scholar] [CrossRef] [PubMed]
  164. Chacon, A.; Bobin, A.; Leleu, X. Nouvelles AMMs: Ciltacabtagene autoleucel—patients atteints d’un myélome multiple en rechute ou réfractaire après au moins trois lignes de traitements. Bull. Cancer 2022, 109, 993–995. [Google Scholar] [CrossRef]
  165. Sharma, P.; Kanapuru, B.; George, B.; Lin, X.; Xu, Z.; Bryan, W.W.; Pazdur, R.; Theoret, M.R. FDA Approval Summary: Idecabtagene Vicleucel for Relapsed or Refractory Multiple Myeloma. Clin. Cancer Res. 2022, 28, 1759–1764. [Google Scholar] [CrossRef]
Figure 1. Mechanisms of action of anti-CD38 agents. Anti-CD38 monoclonal antibodies induce complement-dependent cytotoxicity (CDC) with the formation of a complement membrane attack complex leading to cell lysis; antibody-dependent cellular phagocytosis (ADCP) mediated by macrophages (Mφ); antibody-dependent cellular cytotoxicity (ADCC) mainly mediated by natural killer (NK) cells and cytotoxic T cells; direct cellular apoptosis; and modulation of extracellular ectoenzyme activity. Made using smart.servier.com.
Figure 1. Mechanisms of action of anti-CD38 agents. Anti-CD38 monoclonal antibodies induce complement-dependent cytotoxicity (CDC) with the formation of a complement membrane attack complex leading to cell lysis; antibody-dependent cellular phagocytosis (ADCP) mediated by macrophages (Mφ); antibody-dependent cellular cytotoxicity (ADCC) mainly mediated by natural killer (NK) cells and cytotoxic T cells; direct cellular apoptosis; and modulation of extracellular ectoenzyme activity. Made using smart.servier.com.
Ijms 24 00645 g001
Figure 2. Mechanisms of action of anti-BCMA agents. Anti-BCMA agents can induce antibody-dependent cellular phagocytosis (ADCP) mediated by macrophages (Mφ); antibody-dependent cellular cytotoxicity (ADCC), mainly mediated by natural killer (NK) cells; direct cellular apoptosis through the intracellular release of cytotoxic agents; and tumor cell killing by cytotoxic T cells (CTL) and engineered chimeric antigen receptor (CAR)-T cells. Made using smart.servier.com.
Figure 2. Mechanisms of action of anti-BCMA agents. Anti-BCMA agents can induce antibody-dependent cellular phagocytosis (ADCP) mediated by macrophages (Mφ); antibody-dependent cellular cytotoxicity (ADCC), mainly mediated by natural killer (NK) cells; direct cellular apoptosis through the intracellular release of cytotoxic agents; and tumor cell killing by cytotoxic T cells (CTL) and engineered chimeric antigen receptor (CAR)-T cells. Made using smart.servier.com.
Ijms 24 00645 g002
Table 1. Anti-CD38 MoAb clinical trials.
Table 1. Anti-CD38 MoAb clinical trials.
MoAbTrialPhaseDiseaseN. ptTreatmentCompared Treatment
DaratumumabNCT00574288 (GEN 501)I/IIR/R MM72Dara
NCT01985126 (SIRIUS)IIR/R MM
≥3 lines
124Dara
NCT01615029 (GEN 503)I/IIR/R MM32Dara-RD
NCT02076009 (POLLUX)IIIR/R MM569Dara-RDRD
NCT02136134 (CASTOR)IIIR/R MM498Dara-VDVD
NCT01998971IR/R MM
≥2 lines
102Dara-PD
NCT03180736 (APOLLO)IIIR/R MM304Dara-PDPD
NCT01998971 (EQUULEUS)IR/R MM85Dara-KD
NCT03158688 (CANDOR)IIIR/R MM466Dara-KDKD
NCT02195479 (ALCYONE)IIITN MM
unfit patients
706Dara-VMPVMP
NCT02252172 (MAYA)IIITN MM
unfit patients
737Dara-RDRD
HOVON 143IIMM
frail patients
46Dara-IxD
NCT02541383 (CASSIOPEIA)IIITN MM
fit patients
1085Dara-VTDVTD
NCT02874742 (GRIFFIN)IITN MM
fit patients
292Dara-VRD
NCT03710603 (PERSEUS)IIITN MM
fit patients
690Dara-VRDVRD
IsatuximabNCT01084252I/IIR/R MM
≥3 lines
164Isa
NCT01749969IbR/R MM57Isa-RD
NCT02283775IbR/R MM
≥2 lines
45Isa-PD
NCT02990338 (ICARIA-MM)IIIR/R MM
≥2 lines
307Isa-PDPD
NCT03275285
(IKEMA)
IIIR/R MM302Isa-KDKD
MOR202NCT01421186I/IIaR/R MM91MOR202MOR202-RD/PD
TAK-079NCT03439280IbR/R MM
≥3 lines
34TAK-079
Abbreviations. MoAb, monoclonal antibody; R/R MM, relapsed/refractory multiple myeloma; dara, daratumumab; R, lenalidomide; D, dexamethasone; V, bortezomib; P, pomalidomide; K, carfilzomib; TN, treatment naïve; M, melphalan; Ix; Isa, isatuximab.
Table 2. Anti-BCMA ADC clinical trials.
Table 2. Anti-BCMA ADC clinical trials.
DrugTrialPhaseDiseaseN. ptTreatmentCompared Treatment
Belantamab-mafodotinNCT02064387
(DREAMM-1)
IR/R MM
≥3 lines
73BelMaf
NCT03525678
(DREAMM-2)
IIR/R MM
≥3 lines
97BelMaf
NCT03544281
(DREAMM-6)
I/IIR/R MM152BelMaf-VDBelMaf-RD
NCT04091126 (DREAMM-9)IIITN MM
unfit patients
144BelMaf-VRDVRD
NCT03848845
(DREAMM-4)
I/IIR/R MM
≥3 lines
41BelMaf +
pembrolizumab
AMG 224NCT02561962IR/R MM
≥3 lines
41AMG-224
MEDI2228NCT03489525IR/R MM
≥3 lines
82MEDI2228
HDP 101NCT04879043IR/R MM
≥3 lines
78HDP-101
Abbreviations: BCMA, B-cell maturation antigen; ADC, antibody–drug conjugates; R/R MM, relapsed/refractory multiple myeloma; BelMaf, belantamab-mafodotin; R, lenalidomide; D, dexamethasone; V, bortezomib; TN, treatment naïve.
Table 3. Anti-BCMA/CD3 bispecific MoAb clinical trials.
Table 3. Anti-BCMA/CD3 bispecific MoAb clinical trials.
DrugTrialPhaseDiseaseN. ptTreatmentCompared Treatment
TeclistamabNCT03145181
(MajesTEC-1)
IR/R MM
≥3 lines
157Tecl s.c.Tecl i.v.
NCT04557098
(MajesTEC-1)
IIR/R MM
≥3 lines
192Tecl s.c.
NCT04108195IbR/R MM
≥3 lines
295Dara + Tecl s.c.Dara + P + Tecl s.c.
NCT05243797
(MajesTEC-4)
IIIR/R MM1000Tecl s.c. + RR
NCT05083169
(MajesTEC-3)
IIIR/R MM630Dara + Tecl s.c.Dara-PD/RD
NCT04722146
(MajesTEC-2)
IR/R MM146Tecl s.c. + others
ElranatamabNCT03269136
(MagnetisMM-1)
IR/R MM
≥3 lines
103Elrat i.v.Elrat s.c./Elrat + P/Elrat + R
NCT05090566
(MagnetisMM-4)
IIR/R MM
≥3 lines
105Elrat + NiroElrat-RD
NCT04649359
(MagnetisMM-3)
IIR/R MM
≥3 lines
187Elrat
NCT05317416
(MagnetisMM-7)
IIIMRD+ after auto-HSCT366ElratR
NCT05020236
(MagnetisMM-5)
IIIR/R MM589ElratElrat+Dara/Dara-PD
NCT04798586
(MagnetisMM-2)
IR/R MM
≥3 lines
Elrat
NCT05228470
(MagnetisMM-8)
IIR/R MM
≥3 lines
36Elrat
AMG 420NCT02514239IR/R MM
≥2 lines
43AMG 420
REGN5458NCT03761108
(LINKER-MM1)
I/IIR/R MM
≥3 lines
291REGN5458
CC93269NCT03486067IR/R MM220CC93269
TNB-383BNCT03933735I/IIR/R MM
≥3 lines
214TNB-383B
AMG 701NCT03287908IR/R MM
≥3 lines
408AMG 701AMG 701 + P/
AMG 701 + PD
Abbreviations: BCMA, B-cell maturation antigen; MoAb, monoclonal antibody; R/R MM, relapsed/refractory multiple myeloma; Tecl, teclistamab; s.c., subcutaneous; i.v., intravenous; dara, daratumumab; P, pomalidomide; R, lenalidomide; D, dexamethasone; Elrat, elranatamab; MRD, minimal residual disease; HSCT, hematopoietic stem cell transplantation.
Table 4. Anti-BCMA CAR-T cell clinical trials.
Table 4. Anti-BCMA CAR-T cell clinical trials.
DrugTrialPhaseDiseaseN. ptTreatmentCompared Treatment
Idecabtagene vicleucelNCT02658929IR/R MM
≥3 lines
33Ide-cel
NCT03361748
(KarMMa)
IIR/R MM
≥3 lines
140Ide-cel
NCT03601078
(KARMMA-2)
IIHigh-risk
R/R MM
235Ide-cel
NCT04196491
(KARMMA-4)
IHigh-Risk
TN MM
13Induction +
Ide-cel
NCT03651128
(KARMMA-3)
IIIR/R MM
2–4 lines
381Ide-celS.o.C.
Ciltacabtagene autoleucelNCT03090659
(LEGEND-2)
I/IIR/R MM
≥3 lines
57Cilta-cel
NCT03548207
(CARTITUDE-1)
Ib/IIR/R MM
≥3 lines
113Cilta-cel
NCT03758417
(CARTIFAN-1)
IIR/R MM
≥3 lines
130Cilta-cel
NCT04133636
(CARTITUDE-2)
IITN or R/R MM18Cilta-celCilta-cel + others
NCT04181827
(CARTITUDE-4)
IIIR/R MM
1–3 lines
419Cilta-celDara-VD/PD
NCT04923893
(CARTITUDE-5)
IIITN MM
Unfit patients
650VRD +
Cilta-cel
VRD + RD
NCT05257083
(CARTITUDE-6)
IIITN MM750Dara-VRD + Cilta-celDara-VRD + Auto-HSCT
CT053NCT03716856, NCT03302403 and NCT03380039IR/R MM
≥2 lines
24CT053
NCT03975907
(LUMMICAR)
I/IIR/R MM
≥3 lines
114CT053
NCT03915184
(LUMMICAR-2)
I/IIR/R MM
≥3 lines
105CT053
JCARH125NCT03430011
(EVOLVE)
I/IIR/R MM
≥3 lines
169JCARH125
CART-BCMANCT02546167IR/R MM
≥3 lines
25CART-BCMA
P-BCMA-101NCT03288493
(PRIME)
I/IIR/R MM135P-BCMA-101
CT103ChiCTR1800018137IR/R MM18CT103
NCT05066646
(FUMANBA-1)
I/IIR/R MM
≥3 lines
132CT103
NCT05181501
(FUMANBA-2)
IHigh-risk
TN MM
20Induction + CT103
MCARH171NCT03070327IR/R MM
≥2 lines
20MCARH171
KITE-585NCT03318861IR/R MM
≥3 lines
17KITE-585
Abbreviations: BCMA, B-cell maturation antigen; CAR, chimeric antigen receptor; R/R MM, relapsed/refractory multiple myeloma; TN, treatment naïve; S.o.C., standard of care; s.c., subcutaneous; V, bortezomib; dara, daratumumab; P, pomalidomide; R, lenalidomide; D, dexamethasone; HSCT, hematopoietic stem cell transplantation.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

De Novellis, D.; Fontana, R.; Giudice, V.; Serio, B.; Selleri, C. Innovative Anti-CD38 and Anti-BCMA Targeted Therapies in Multiple Myeloma: Mechanisms of Action and Resistance. Int. J. Mol. Sci. 2023, 24, 645. https://doi.org/10.3390/ijms24010645

AMA Style

De Novellis D, Fontana R, Giudice V, Serio B, Selleri C. Innovative Anti-CD38 and Anti-BCMA Targeted Therapies in Multiple Myeloma: Mechanisms of Action and Resistance. International Journal of Molecular Sciences. 2023; 24(1):645. https://doi.org/10.3390/ijms24010645

Chicago/Turabian Style

De Novellis, Danilo, Raffaele Fontana, Valentina Giudice, Bianca Serio, and Carmine Selleri. 2023. "Innovative Anti-CD38 and Anti-BCMA Targeted Therapies in Multiple Myeloma: Mechanisms of Action and Resistance" International Journal of Molecular Sciences 24, no. 1: 645. https://doi.org/10.3390/ijms24010645

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop