Next Article in Journal
Assessing the Effectiveness of a Far-Red Fluorescent Reporter for Tracking Stem Cells In Vivo
Previous Article in Journal
Epigallocatechin-3-Gallate Suppresses Human Herpesvirus 8 Replication and Induces ROS Leading to Apoptosis and Autophagy in Primary Effusion Lymphoma Cells
Article Menu
Issue 1 (January) cover image

Export Article

Open AccessArticle
Int. J. Mol. Sci. 2018, 19(1), 12; https://doi.org/10.3390/ijms19010012

Galangin Reduces the Loss of Dopaminergic Neurons in an LPS-Evoked Model of Parkinson’s Disease in Rats

College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
*
Author to whom correspondence should be addressed.
Received: 3 November 2017 / Revised: 14 December 2017 / Accepted: 17 December 2017 / Published: 21 December 2017
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
View Full-Text   |   Download PDF [3982 KB, uploaded 21 December 2017]   |  

Abstract

Parkinson’s disease (PD) is caused by the loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN). Neuroinflammation, which is marked by microglial activation, plays a very important role in the pathogenesis of PD. Pro-inflammatory mediators produced by activated microglia could damage DA neurons. Hence, the inhibition of microglial activation may provide a new approach for treating PD. Galangin has been shown to inhibit inflammation in a variety of diseases, but not PD. In this study, we aimed to investigate the anti-inflammatory effect of galangin and the underlying mechanisms in Lipopolysaccharide (LPS) induced PD models. We first examined the protective effect of galangin in the LPS-induced PD rat model. Specifically, we investigated the effects on motor dysfunction, microglial activation, and the loss of DA neurons. Then, galangin was used to detect the impact on the inflammatory responses and inflammatory signaling pathways in LPS-induced BV-2 cells. The in vivo results showed that galangin dose-dependently attenuates the activation of microglia, the loss of DA neurons, and motor dysfunction. In vitro, galangin markedly inhibited LPS-induced expression of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β), cyclooxygenase 2 (COX-2), and induced nitric oxide synthase (iNOS) via associating with the phosphorylation of c-JUN N-terminal Kinase (JNK), p38, protein kinase B (AKT), and nuclear factor κB (NF-κB) p65. Collectively, the results indicated that galangin has a role in protecting DA neurons by inhibiting microglial activation. View Full-Text
Keywords: Parkinson’s disease; galangin; microglia; MAPKs; NF-κB; AKT Parkinson’s disease; galangin; microglia; MAPKs; NF-κB; AKT
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Chen, G.; Liu, J.; Jiang, L.; Ran, X.; He, D.; Li, Y.; Huang, B.; Wang, W.; Fu, S. Galangin Reduces the Loss of Dopaminergic Neurons in an LPS-Evoked Model of Parkinson’s Disease in Rats. Int. J. Mol. Sci. 2018, 19, 12.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top