Int. J. Mol. Sci. 2014, 15(6), 10605-10621; doi:10.3390/ijms150610605
Article

Genistein Inhibits Osteoclastic Differentiation of RAW 264.7 Cells via Regulation of ROS Production and Scavenging

,
 and *
Received: 11 February 2014; in revised form: 22 May 2014 / Accepted: 30 May 2014 / Published: 12 June 2014
(This article belongs to the Section Bioactives and Nutraceuticals)
View Full-Text   |   Download PDF [1935 KB, uploaded 19 June 2014]
Abstract: Genistein, a phytoestrogen, has been demonstrated to have a bone-sparing and antiresorptive effect. Genistein can inhibit the osteoclast formation of receptor activator of nuclear factor-κB ligand (RANKL)-induced RAW 264.7 cells by preventing the translocation of nuclear factor-κB (NF-κB), a redox-sensitive factor, to the nucleus. Therefore, the suppressive effect of genistein on the reactive oxygen species (ROS) level during osteoclast differentiation and the mechanism associated with the control of ROS levels by genistein were investigated. The cellular antioxidant capacity and inhibitory effect of genistein were confirmed. The translation and activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1), as well as the disruption of the mitochondrial electron transport chain system were obviously suppressed by genistein in a dose-dependent manner. The induction of phase II antioxidant enzymes, such as superoxide dismutase 1 (SOD1) and heme oxygenase-1 (HO-1), was enhanced by genistein. In addition, the translational induction of nuclear factor erythroid 2-related factor 2 (Nrf2) was notably increased by genistein. These results provide that the inhibitory effects of genistein on RANKL-stimulated osteoclast differentiation is likely to be attributed to the control of ROS generation through suppressing the translation and activation of Nox1 and the disruption of the mitochondrial electron transport chain system, as well as ROS scavenging through the Nrf2-mediated induction of phase II antioxidant enzymes, such as SOD1 and HO-1.
Keywords: genistein; osteoclastic differentiation; reactive oxygen species; Nox1; mitochondrial electron transport chain system; phase II antioxidant enzymes
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Lee, S.-H.; Kim, J.-K.; Jang, H.-D. Genistein Inhibits Osteoclastic Differentiation of RAW 264.7 Cells via Regulation of ROS Production and Scavenging. Int. J. Mol. Sci. 2014, 15, 10605-10621.

AMA Style

Lee S-H, Kim J-K, Jang H-D. Genistein Inhibits Osteoclastic Differentiation of RAW 264.7 Cells via Regulation of ROS Production and Scavenging. International Journal of Molecular Sciences. 2014; 15(6):10605-10621.

Chicago/Turabian Style

Lee, Sang-Hyun; Kim, Jin-Kyoung; Jang, Hae-Dong. 2014. "Genistein Inhibits Osteoclastic Differentiation of RAW 264.7 Cells via Regulation of ROS Production and Scavenging." Int. J. Mol. Sci. 15, no. 6: 10605-10621.


Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert