Next Article in Journal
A Role for Protein Phosphatase 2A in Regulating p38 Mitogen Activated Protein Kinase Activation and Tumor Necrosis Factor-Alpha Expression during Influenza Virus Infection
Previous Article in Journal
Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters
Int. J. Mol. Sci. 2013, 14(4), 7302-7326; doi:10.3390/ijms14047302
Review

Plant Nucleotide Binding Site–Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses

,
,
,
 and
*
Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Agricultural Research Council-Cereal Research Centre (CRA-CER), SS 16 km 675, 71122 Foggia, Italy These authors contributed equally to this work.
* Author to whom correspondence should be addressed.
Received: 26 February 2013 / Revised: 21 March 2013 / Accepted: 26 March 2013 / Published: 2 April 2013
(This article belongs to the Section Biochemistry, Molecular Biology and Biophysics)
View Full-Text   |   Download PDF [344 KB, uploaded 19 June 2014]   |   Browse Figure

Abstract

The most represented group of resistance genes are those of the nucleotide binding site–leucine-rich repeat (NBS-LRR) class. These genes are very numerous in the plant genome, and they often occur in clusters at specific loci following gene duplication and amplification events. To date, hundreds of resistance genes and relatively few quantitative trait loci for plant resistance to pathogens have been mapped in different species, with some also cloned. When these NBS-LRR genes have been physically or genetically mapped, many cases have shown co-localization between resistance loci and NBS-LRR genes. This has allowed the identification of candidate genes for resistance, and the development of molecular markers linked to R genes. This review is focused on recent genomics studies that have described the abundance, distribution and evolution of NBS-LRR genes in plant genomes. Furthermore, in terms of their expression, NBS-LRR genes are under fine regulation by cis- and trans-acting elements. Recent findings have provided insights into the roles of alternative splicing, the ubiquitin/ proteasome system, and miRNAs and secondary siRNAs in the regulation of NBS-LRR gene expression at the post-transcriptional, post-translational and epigenetic levels. The possibility to use this knowledge for genetic improvement of plant resistance to pathogens is discussed.
Keywords: NBS-LRR genes; gene evolution; plant breeding NBS-LRR genes; gene evolution; plant breeding
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Marone, D.; Russo, M.A.; Laidò, G.; De Leonardis, A.M.; Mastrangelo, A.M. Plant Nucleotide Binding Site–Leucine-Rich Repeat (NBS-LRR) Genes: Active Guardians in Host Defense Responses. Int. J. Mol. Sci. 2013, 14, 7302-7326.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

Cited By

[Return to top]
Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert