Int. J. Mol. Sci. 2013, 14(12), 24492-24500; doi:10.3390/ijms141224492

Bioresorbable Drug-Eluting Magnesium-Alloy Scaffold for Treatment of Coronary Artery Disease

1,2email, 1,3email, 1email, 1email, 1email, 1email, 5email, 2email, 6email and 1,4,* email
Received: 21 October 2013; in revised form: 3 December 2013 / Accepted: 12 December 2013 / Published: 16 December 2013
(This article belongs to the Special Issue Biodegradable Magnesium Alloys and Implants)
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: The introduction of metallic drug-eluting stents has reduced the risk of restenosis and widened the indications of percutaneous coronary intervention in treatment of coronary artery disease. However, this medical device can induce hypersensitive reaction that interferes with the endothelialization and healing process resulting in late persistent or acquired malapposition of the permanent metallic implant. Delayed endotheliaization and malapposition may lead to late and very late stent thrombosis. Bioresorbable scaffolds (BRS) have been introduced to potentially overcome these limitations, as they provide temporary scaffolding and then disappear, liberating the treated vessel from its cage. Magnesium is an essential mineral needed for a variety of physiological functions in the human body and its bioresorbable alloy has the strength-to-weight ratio comparable with that of strong aluminum alloys and alloy steels. The aim of this review is to present the new developments in Magnesium BRS technology, to describe its clinical application and to discuss the future prospects of this innovative therapy.
Keywords: bioresorbable scaffold; drug-eluting stent; bioabsorbable; biodegradable; coronary artery disease; magnesium
PDF Full-text Download PDF Full-Text [551 KB, uploaded 19 June 2014 05:20 CEST]

Export to BibTeX |

MDPI and ACS Style

Campos, C.M.; Muramatsu, T.; Iqbal, J.; Zhang, Y.-J.; Onuma, Y.; Garcia-Garcia, H.M.; Haude, M.; Lemos, P.A.; Warnack, B.; Serruys, P.W. Bioresorbable Drug-Eluting Magnesium-Alloy Scaffold for Treatment of Coronary Artery Disease. Int. J. Mol. Sci. 2013, 14, 24492-24500.

AMA Style

Campos CM, Muramatsu T, Iqbal J, Zhang Y-J, Onuma Y, Garcia-Garcia HM, Haude M, Lemos PA, Warnack B, Serruys PW. Bioresorbable Drug-Eluting Magnesium-Alloy Scaffold for Treatment of Coronary Artery Disease. International Journal of Molecular Sciences. 2013; 14(12):24492-24500.

Chicago/Turabian Style

Campos, Carlos M.; Muramatsu, Takashi; Iqbal, Javaid; Zhang, Yao-Jun; Onuma, Yoshinobu; Garcia-Garcia, Hector M.; Haude, Michael; Lemos, Pedro A.; Warnack, Boris; Serruys, Patrick W. 2013. "Bioresorbable Drug-Eluting Magnesium-Alloy Scaffold for Treatment of Coronary Artery Disease." Int. J. Mol. Sci. 14, no. 12: 24492-24500.

Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert